ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

5.1 Dinámica De Un Sistema De Partículas


Enviado por   •  20 de Noviembre de 2013  •  747 Palabras (3 Páginas)  •  866 Visitas

Página 1 de 3

5.1 Dinámica de un sistema de partículas

Sea un sistema de partículas. Sobre cada partícula actúan las fuerzas exteriores al sistema y las fuerzas de interacción mutua entre las partículas del sistema. Supongamos un sistema formado por dos partículas. Sobre la partícula 1 actúa la fuerza exterior F1 y la fuerza que ejerce la partícula 2, F12. Sobre la partícula 2 actúa la fuerza exterior F2 y la fuerza que ejerce la partícula 1, F21.

Por ejemplo, si el sistema de partículas fuese el formado por la Tierra y la Luna: las fuerzas exteriores serían las que ejerce el Sol (y el resto de los planetas) sobre la Tierra y sobre la Luna. Las fuerzas interiores serían la atracción mutua entre estos dos cuerpos celestes.

Para cada una de las partículas se cumple que la razón de la variación del momento lineal con el tiempo es igual la resultante de las fuerzas que actúan sobre la partícula considerada, es decir, el movimiento de cada partícula viene determinado por las fuerzas interiores y exteriores que actúan sobre dicha partícula.

Sumando miembro a miembro y teniendo en cuenta la tercera Ley de Newton, F12=-F21, tenemos que

Donde P es el momento lineal total del sistema y Fext es la resultante de las fuerzas exteriores que actúan sobre el sistema de partículas. El movimiento del sistema de partículas viene determinado solamente por las fuerzas exteriores.

5.2 Movimiento del centro de masa.

En la figura, tenemos dos partículas de masas m1 y m2, como m1 es mayor que m2, la posición del centro de masas del sistema de dos partículas estará cerca de la masa mayor.

En general, la posición rcm del centro de masa de un sistema de N partículas es

La velocidad del centro de masas vcm se obtiene derivando con respecto del tiempo

En el numerador figura el momento lineal total y en el denominador la masa total del sistema de partículas.

De la dinámica de un sistema de partículas tenemos que

El centro de masas de un sistema de partículas se mueve como si fuera una partícula de masa igual a la masa total del sistema bajo la acción de la fuerza externa aplicada al sistema.

En un sistema aislado Fext=0 el centro de masas se mueve con velocidad constante vcm=cte.

El Sistema de Referencia del Centro de Masas

Para un sistema de dos partículas

La velocidad de la partícula 1 respecto del centro de masas es

En el sistema-C, las dos partículas se mueven en direcciones opuestas.

Momento lineal

Podemos comprobar fácilmente que el momento lineal de la partícula 1 respecto al sistema-C es igual y opuesto al momento lineal de

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com