5.1 Dinámica De Un Sistema De Partículas
Enviado por eliup • 20 de Noviembre de 2013 • 747 Palabras (3 Páginas) • 866 Visitas
5.1 Dinámica de un sistema de partículas
Sea un sistema de partículas. Sobre cada partícula actúan las fuerzas exteriores al sistema y las fuerzas de interacción mutua entre las partículas del sistema. Supongamos un sistema formado por dos partículas. Sobre la partícula 1 actúa la fuerza exterior F1 y la fuerza que ejerce la partícula 2, F12. Sobre la partícula 2 actúa la fuerza exterior F2 y la fuerza que ejerce la partícula 1, F21.
Por ejemplo, si el sistema de partículas fuese el formado por la Tierra y la Luna: las fuerzas exteriores serían las que ejerce el Sol (y el resto de los planetas) sobre la Tierra y sobre la Luna. Las fuerzas interiores serían la atracción mutua entre estos dos cuerpos celestes.
Para cada una de las partículas se cumple que la razón de la variación del momento lineal con el tiempo es igual la resultante de las fuerzas que actúan sobre la partícula considerada, es decir, el movimiento de cada partícula viene determinado por las fuerzas interiores y exteriores que actúan sobre dicha partícula.
Sumando miembro a miembro y teniendo en cuenta la tercera Ley de Newton, F12=-F21, tenemos que
Donde P es el momento lineal total del sistema y Fext es la resultante de las fuerzas exteriores que actúan sobre el sistema de partículas. El movimiento del sistema de partículas viene determinado solamente por las fuerzas exteriores.
5.2 Movimiento del centro de masa.
En la figura, tenemos dos partículas de masas m1 y m2, como m1 es mayor que m2, la posición del centro de masas del sistema de dos partículas estará cerca de la masa mayor.
En general, la posición rcm del centro de masa de un sistema de N partículas es
La velocidad del centro de masas vcm se obtiene derivando con respecto del tiempo
En el numerador figura el momento lineal total y en el denominador la masa total del sistema de partículas.
De la dinámica de un sistema de partículas tenemos que
El centro de masas de un sistema de partículas se mueve como si fuera una partícula de masa igual a la masa total del sistema bajo la acción de la fuerza externa aplicada al sistema.
En un sistema aislado Fext=0 el centro de masas se mueve con velocidad constante vcm=cte.
El Sistema de Referencia del Centro de Masas
Para un sistema de dos partículas
La velocidad de la partícula 1 respecto del centro de masas es
En el sistema-C, las dos partículas se mueven en direcciones opuestas.
Momento lineal
Podemos comprobar fácilmente que el momento lineal de la partícula 1 respecto al sistema-C es igual y opuesto al momento lineal de
...