Análisis de libros de Matlab
Enviado por THEALUCARD65 • 23 de Febrero de 2014 • Tutorial • 10.126 Palabras (41 Páginas) • 199 Visitas
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.
Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.
The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.
Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
© 2004 by Chapman & Hall/CRC
No claim to original U.S. Government works International Standard Book Number 1-58488-364-2 Library of Congress Card Number 2003055207 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper
Library of Congress Cataloging-in-Publication Data
White, R. E. (Robert E.) Computational mathematics : models, methods, and analysis with MATLAB and MPI / Robert E. White. p. cm. Includes bibliographical references and index. ISBN 1-58488-364-2 (alk. paper) 1. Numerical analysis. 2. MATLAB. 3. Computer interfaces. 4. Parallel programming (Computer science) I. Title.
QA297.W495 2003 519.4—dc21 2003055207
© 2004 by Chapman & Hall/CRC
Visit the CRC Press Web site at www.crcpress.com
Computational Mathematics: Models, Methods and Analysis with MATLAB and MPI
R. E. White Department of Mathematics North Carolina State University
Updated on August 3, 2003 To Be Published by CRC Press in 2003
© 2004 by Chapman & Hall/CRC
white@math.ncsu.edu
Contents
List of Figures ix
List of Tables xi
Preface xiii
Introduction xv
1 Discrete Time-Space Models 1 1.1 Newton Cooling Models . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Heat Diusion in a Wire . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Diusion in a Wire with Little Insulation . . . . . . . . . . . . . 17 1.4 Flow and Decay of a Pollutant in a Stream . . . . . . . . . . . . 25 1.5 Heat and Mass Transfer in Two Directions . . . . . . . . . . . . . 32 1.6 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . 42
2 Steady State Discrete Models 51 2.1 Steady State and Triangular Solves . . . . . . . . . . . . . . . . . 51 2.2 Heat Diusion and Gauss Elimination . . . . . . . . . . . . . . . 59 2.3 Cooling Fin and Tridiagonal Matrices . . . . . . . . . . . . . . . 68 2.4 Schur Complement . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.5 Convergence to Steady State . . . . . . . . . . . . . . . . . . . . 86 2.6 Convergence to Continuous Model . . . . . . . . . . . . . . . . . 91
3 Poisson Equation Models 99 3.1 Steady State and Iterative Methods . . . . . . . . . . . . . . . . 99 3.2 Heat Transfer in 2D Fin and SOR . . . . . . . . . . . . . . . . . 107 3.3 Fluid Flow in a 2D Porous Medium . . . . . . . . . . . . . . . . . 116 3.4 Ideal Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.5 Deformed Membrane and Steepest Descent . . . . . . . . . . . . 130 3.6 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . 138
v
© 2004 by Chapman & Hall/CRC
vi CONTENTS
4 Nonlinear and 3D Models 145 4.1 Nonlinear Problems in One Variable . . . . . . . . . . . . . . . . 145 4.2 Nonlinear Heat Transfer in a Wire . . . . . . . . . . . . . . . . . 152 4.3 Nonlinear Heat Transfer in 2D . . . . . . . . . . . . . . . . . . . 159 4.4 Steady State 3D Heat Diusion . . . . . . . . . . . . . . . . . . . 166 4.5 Time Dependent 3D Diusion . . . . . . . . . . . . . . . . . . . . 171 4.6 High Performance Computations in 3D . . . . . . . . . . . . . . . 179
5 Epidemics, Images and Money 189 5.1 Epidemics and Dispersion . . . . . . . . . . . . . . . . . . . . . . 189 5.2 Epidemic Dispersion in 2D . . . . . . . . . . . . . . . . . . . . . . 197 5.3 Image Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.4 Restoration in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5.5 Option Contract Models . . . . . . . . . . . . . . . . . . . . . . . 219 5.6 Black-Scholes Model for Two Assets . . . . . . . . . . . . . . . . 228
6 High Performance Computing 237 6.1 Vector Computers and Matrix Products . . . . . . . . . . . . . . 237 6.2 Vector Computations for Heat Diusion . . . . . . . . . . . . . . 244 6.3 Multiprocessors and Mass Transfer . . . . . . . . . . . . . . . . . 249 6.4 MPI and the IBM/SP . . . . . . . . . . . . . . . . . . . . . . . . 258 6.5 MPI and Matrix Products . . . . . . . . . . . . . . . . . . . . . . 263 6.6 MPI and 2D Models . . . . . . . . . . . . . . . . . . . . . . . . . 268
7 Message Passing Interface 275 7.1 Basic MPI Subroutines . . . . . . . . . . . . . . . . . . . . . . . . 275 7.2 Reduce and Broadcast . . . . . . . . . . . . . . . . . . . . . . . . 282 7.3 Gather and Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . 288 7.4 Grouped Data Types . . . . . . . . . . . . . . . . . . . . . . . . . 294 7.5 Communicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 7.6 Fox Algorithm for AB . . . . . . . . . . . . . . . . . . . . . . . . 307
8 Classical Methods for Ax = d 313 8.1 Gauss Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 313 8.2 Symmetric Positive Definite Matrices . . . . . . . . . . . . . . . . 318 8.3 Domain Decomposition and MPI . . . . . . . . . . . . . . . . . . 324 8.4 SOR and P-regular Splittings . . . . . . . . . . . . . . . . . . . . 328 8.5 SOR and MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 8.6 Parallel ADI Schemes . . . . . . . . . . . . . . . . . . . . . . . . 339
9 Krylov Methods for Ax = d 345 9.1 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . 345 9.2 Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 9.3 PCG and MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 9.4 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 9.5 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
© 2004 by Chapman & Hall/CRC
CONTENTS
...