ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Aplicacion De Derivadas


Enviado por   •  22 de Noviembre de 2012  •  2.867 Palabras (12 Páginas)  •  5.627 Visitas

Página 1 de 12

TITULO:

OBJETIVO:

Introducir el concepto de derivada, proporcionar su interpretación gráfica e ilustrar su interpretación física. Conocer sus características, saber distinguir en qué puntos una función es derivable y en qué puntos no admite derivada.

Familiarizarse con el cálculo automático de derivadas, con la regla de la cadena para la derivación de funciones compuestas, con la derivación múltiple y finalmente con la derivación implícita.

JUSTIFICACION:

El estudio de la derivada es muy importante, este proyecto fue realizado porque se considera indispensable el conocimiento de tal tema, ya que como ingenieros estaremos viendo matemáticas en las que sin duda nos encontraremos con el estudio de la derivada, así como en nuestra vida cotidiana por tales motivos justifico este trabajo que a continuación les presento.

HIPOTESIS

Durante el transcurso de nuestra corta carrera hemos visto un sinfín de temas matemáticos uno de ellos es la derivada. Estamos convencidos que para culminar la carrera o para pasar la asignatura es necesario ser capaz de desarrollar y aprendernos la solución de una derivada, pero realmente ¿Para que nos sirve esto? ¿Podremos aplicar la derivada en problemas de la vida cotidiana? ¿Como saberlo?

TESIS

El concepto de derivada es uno de los dos conceptos centrales del cálculo infinitesimal. El otro concepto es la «anti derivada» o integral; ambos están relacionados por el teorema fundamental del cálculo. A su vez, los dos conceptos centrales del cálculo están basados en el concepto de límite, el cual separa las matemáticas previas, como el Álgebra, la Trigonometría o la Geometría Analítica, del Cálculo. Quizá la derivada es el concepto más importante del Cálculo Infinitesimal.

INTRODUCCION:

El concepto se derivada se aplica en los casos donde es necesario medir la rapidez con que se produce el cambio de una situación. Por ello es una herramienta de cálculo fundamental en los estudios de Física, Química y Biología.

La derivación constituye una de las operaciones de mayor importancia cuando tratamos de funciones reales de variable real puesto que nos indica la tasa de variación de la función en un instante determinado o para un valor determinado de la variable, si ésta no es el tiempo. Por tanto, la derivada de una función para un valor de la variable es la tasa de variación instantánea de dicha función y para el valor concreto de la variable.

Un aspecto importante en el estudio de la derivada de una función es que la pendiente o inclinación de la recta tangente a la curva en un punto representa la rapidez de cambio instantáneo. Así pues, cuanto mayor es la inclinación de la recta tangente en un punto, mayor es la rapidez de cambio del valor de la función en las proximidades del punto.

Además de saber calcular la derivada de una función en un punto, es conveniente ser capaz de determinar rápidamente la función derivada de cualquier función. La derivada nos informará de con qué celeridad va cambiando el valor de la función en el punto considerado. Esta sección está dedicada precisamente a aprender tanto a calcular el valor de la derivada de una función en un punto como a saber obtener la función derivada de la original. Por este motivo dedicaremos especial atención a como derivar funciones compuestas, funciones implícitas así como a efectuar diversas derivaciones sobre una misma función.

El concepto de derivada segunda de una función - derivada de la derivada de una función- también se aplica para saber si la rapidez de cambio se mantiene, aumenta o disminuye. Así el concepto de convexidad y concavidad -aspectos geométricos o de forma- de una función están relacionados con el valor de la derivada segunda.

Finalmente veremos la relación que tiene la derivada con los problemas de optimización de funciones. Estos problemas decimos que son de máximo o de mínimo (máximo rendimiento, mínimo coste, máximo beneficio, mínima aceleración, mínima distancia, etc.).

DESARROLLO

¿QUE ES LA DERIVADA?:

En matemáticas, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se toma cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado.

Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km en entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21, etc.

El valor de la derivada de una función en un punto puede interpretase geométricamente, ya que se corresponde con pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es a su vez la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial.

La derivada de una función f en un punto x se denota como f′(x). La función cuyo valor en cada punto x es esta derivada es la llamada función derivada de f, denotada por f′. El proceso de encontrar la derivada de una función se denomina diferenciación, y es una de las herramientas principales en el área de las matemáticas conocida como cálculo.

DESARROLLO

Ejemplos de aplicación de derivadas.

Extremos relativos

La función f tiene un máximo relativo al punto c si hay un intervalo (r, s) (aún cuando sea muy pequeño) conteniendo c para el cual f(c) ≥ f(x) para toda x entre r y s para la cual f(x) esté definida.

f tiene un mínimo relativo al punto c si hay un intervalo (r, s) (aún cuando sea muy pequeño) conteniendo c para el cual f(c) ≤ f(x) para toda x entre r y s para la cual f(x) esté definida.

Un extremo relativo, significa un máximo relativo o un mínimo relativo.

...

Descargar como (para miembros actualizados) txt (17 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com