Coeficiente De Expansion De Los Gases
Enviado por dano0706 • 27 de Febrero de 2013 • 1.383 Palabras (6 Páginas) • 681 Visitas
Plano inclinado:
es una máquina simple que consiste en una superficie plana que forma un ángulo agudo con el suelo y se utiliza para elevar cuerpos a cierta altura.
Tiene la ventaja de necesitarse una fuerza menor que la que se emplea si levantamos dicho cuerpo verticalmente, aunque a costa de aumentar la distancia recorrida y vencer la fuerza de rozamiento.
Las leyes que rigen el comportamiento de los cuerpos en un plano inclinado fueron enunciadas por primera vez por el matemático Simon Stevin, en la segunda mitad del siglo XVI.
Para analizar las fuerzas existentes sobre un cuerpo situado sobre un plano inclinado, hay que tener en cuenta la existencia de varios orígenes en las mismas.
En primer lugar se debe considerar la existencia de una fuerza de gravedad, también conocida como peso, que es consecuencia de la masa (M) que posee el cuerpo apoyado en el plano inclinado y tiene una magnitud de M.g con una dirección vertical y representada en la figura por la letra G.
Existe además una fuerza normal (N), también conocida como la fuerza de reacción ejercida sobre el cuerpo por el plano como consecuencia de la tercera ley de Newton, se encuentra en una dirección perpendicular al plano y tiene una magnitud igual a la fuerza ejercida por el plano sobre el cuerpo. En la figura aparece representada por N y tiene la misma magnitud que F2= M.g.cosα y sentido opuesto a la misma.
Existe finalmente una fuerza de rozamiento, también conocida como fuerza de fricción (FR), que siempre se opone al sentido del movimiento del cuerpo respecto a la superficie, su magnitud depende tanto del peso como de las características superficiales del plano inclinado y la superficie en contacto del cuerpo que proporcionan un coeficiente de rozamiento. Esta fuerza debe tener un valor igual a F1=M.g.senα para que el cuerpo se mantenga en equilibrio. En el caso en que F1 fuese mayor que la fuerza de rozamiento el cuerpo se deslizaría hacia abajo por el plano inclinado. Por tanto para subir el cuerpo se debe realizar una fuerza con una magnitud que iguale o supere la suma de F1 + FR.
Los experimentos de Galileo
Una de las más célebres historias sobre Galileo Galilei es la referente al lanzamiento de diferentes masas desde lo alto de la torre de Pisa (una bola de hierro y una pluma según versiones exageradas) para demostrar que el tiempo que tardaban en alcanzar el suelo era el mismo en contra de lo que planteaba Aristóteles que creía que los objetos más pesados caían más deprisa que los ligeros. No se sabe con seguridad si la historia es cierta pero sí se conoce que realizó experimentos con el plano inclinado para llegar a la misma conclusión, que «los objetos se aceleran independientemente de su masa» ya que como acabamos de ver un plano inclinado sólo ralentiza el movimiento de caída (disminuye el valor de la aceleración) pero no altera su naturaleza (la aceleración sigue siendo constante).
En sus experimentos Galileo dejaba rodar esferas de distinta masa por un plano inclinado y de sus resultados concluyó además que partiendo del reposo, con la bola parada en el punto más alto del plano inclinado, la distancia recorrida era proporcional al cuadrado del tiempo transcurrido.
Caida libre:
Aristóteles había establecido que cuanto más pesado era un cuerpo, más rápidamente caía. Esa afirmación parecía razonable. ¿Por qué un cuerpo más pesado no había de caer con más rapidez? Está claro que la Tierra lo atrae con más fuerza; de otro modo no sería más pesado. Y si uno ve
caer una pluma, una hoja o una piedra, al punto se percata de que la piedra cae con más rapidez que la hoja y ésta con más que la pluma.
El problema radica en que los objetos ligeros son frenados por la resistencia del aire; no deben, por tanto, considerarse sólo relativamente pesados. Si se observa la caída de dos piedras, una que pese medio kilo y otra que pese cinco, la resistencia del aire es insignificante en ambos casos. ¿Cómo percatarse entonces de que la piedra de cinco kilos cae, pese a todo, más aprisa que la de medio kilo?
Se cree que en 1586 Simon Stevin (véase 1583) dejó caer dos piedras a la vez, una considerablemente más pesada que la otra, y demostró que ambas golpeaban el suelo al mismo tiempo. Relatos posteriores pretenden que fue Galileo quien realizó esta demostración,
...