Conjuntos Numericos
Enviado por elyenay • 23 de Enero de 2014 • 1.495 Palabras (6 Páginas) • 508 Visitas
CONJUNTOS NUMÉRICOS
NÚMEROS NATURALES:
Los números naturales son aquellos que normalmente utilizamos para contar. Son aquellos números positivos y sin parte decimal, son infinitos. El conjunto de todos ellos se designa por N:
N = {0, 1, 2, 3, 4,…, 10, 11, 12,…}
El cero, a veces, se excluye del conjunto de los números naturales.
Además de cardinales (para contar), los números naturales son ordinales, pues sirven para ordenar los elementos de un conjunto:
1º (primero), 2º (segundo),…, 16º (decimosexto),…
Los números naturales son los primeros que surgen en las distintas civilizaciones, ya que las tareas de contar y de ordenar son las más elementales que se pueden realizar en el tratamiento de las cantidades.
Entre los números naturales están definidas las operaciones adición y multiplicación. Además, el resultado de sumar o de multiplicar dos números naturales es también un número natural, por lo que se dice que son operaciones internas.
La sustracción, sin embargo, no es una operación interna en N, pues la diferencia de dos números naturales puede no ser un número natural (no lo es cuando el sustraendo es mayor que el minuendo). Por eso se crea el conjunto Z de los números enteros, en el que se puede restar un número de otro, cualesquiera que sean éstos.
La división tampoco es una operación interna en N, pues el cociente de dos números naturales puede no ser un número natural (no lo es cuando el dividendo no es múltiplo del divisor). Por eso se crea el conjunto Q de los números racionales, en el que se puede dividir cualquier número por otro (salvo por el cero). La división entera es un tipo de división peculiar de los números naturales en la que además de un cociente se obtiene un resto
Representación gráfica de números naturales.
A los números naturales los representamos mediante puntos sobre una recta, para ello debemos fijar la posición del punto 0 y la largura del segmento unidad, que será el segmento que llevaremos sobre la recta sucesivas veces según el valor del número.
Propiedades de la Adición de Números Naturales
La adición de números naturales cumple las propiedades asociativa, conmutativa y elemento neutro.
1.- Asociativa:
Si a, b, c son números naturales cualesquiera se cumple que:
(a + b) + c = a + (b + c)
Por ejemplo:
(7 + 4) + 5 = 11 + 5 = 16
7 + (4 + 5) = 7 + 9 = 16
Los resultados coinciden, es decir,
(7 + 4) + 5 = 7 + (4 + 5)
2.-Conmutativa
Si a, b son números naturales cualesquiera se cumple que:
a + b = b + a
En particular, para los números 7 y 4, se verifica que:
7 + 4 = 4 + 7
Gracias a las propiedades asociativa y conmutativa de la adición se pueden efectuar largas sumas de números naturales sin utilizar paréntesis y sin tener en cuenta el orden.
3.- Elemento neutro
El 0 es el elemento neutro de la suma de enteros porque, cualquiera que sea el número natural a, se cumple que:
a + 0 = a.
Propiedades de la Multiplicación de Números Naturales
La multiplicación de números naturales cumple las propiedades asociativa, conmutativa, elemento neutro y distributivo del producto respecto de la suma.
1.-Asociativa
Si a, b, c son números naturales cualesquiera se cumple que:
(a • b) • c = a • (b • c)
Por ejemplo:
(3 • 5) • 2 = 15 • 2 = 30
3 • (5 • 2) = 3 • 10 = 30
Los resultados coinciden, es decir,
(3 • 5) • 2 = 3 • (5 • 2)
2.- Conmutativa
Si a, b son números naturales cualesquiera se cumple que:
a • b = b • a
Por ejemplo:
5 • 8 = 8 • 5 = 40
3.-Elemento neutro
El 1 es el elemento neutro de la multiplicación porque, cualquiera que sea el número natural a, se cumple que:
a • 1 = a
4.- Distributiva del producto respecto de la suma
Si a,
...