ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Dinámica del movimiento armónico simple


Enviado por   •  18 de Abril de 2014  •  1.548 Palabras (7 Páginas)  •  255 Visitas

Página 1 de 7

Dinámica del movimiento armónico simple

En el movimiento armónico simple la fuerza que actúa sobre el móvil es directamente proporcional:

Un ejemplo sería el que realiza un objeto unido al extremo un muelle, en ese caso k sería la constante de elasticidad del muelle. Aplicando la segunda ley de newton tendríamos:

Comparando esta ecuación y la que teníamos para la aceleración (6) se deduce:

Esta ecuación nos permite expresar el periodo (T) del movimiento armónico simple en función de la masa de la partícula y de la constante elástica de la fuerza que actúa sobre ella:

Energía del movimiento armónico simple

Las fuerzas involucradas en un movimiento armónico simple son centrales y, por tanto, conservativas. En consecuencia, se puede definir un campo escalar llamado energía potencial (Ep) asociado a la fuerza. Para hallar la expresión de la energía potencial, basta con integrar la expresión de la fuerza (esto es extensible a todas las fuerzas conservativas) y cambiarla de signo, obteniéndose:

La energía potencial alcanza su máximo en los extremos de la trayectoria y tiene valor nulo (cero) en el punto x = 0, es decir el punto de equilibrio.

La energía cinética cambiará a lo largo de las oscilaciones pues lo hace la velocidad:

La energía cinética es nula en -A o +A (v=0) y el valor máximo se alcanza en el punto de equilibrio (máxima velocidad Aω).

Como sólo actúan fuerzas conservativas, la energía mecánica (suma de la energía cinética y potencial) permanece constante.

Finalmente, al ser la energía mecánica constante, puede calcularse fácilmente considerando los casos en los que la velocidad de la partícula es nula y por lo tanto la energía potencial es máxima, es decir, en los puntos x = -A y x = A. Se obtiene entonces que,

O también cuando la velocidad de la partícula es máxima y la energía potencial nula, en el punto de equilibrio x = 0

Oscilador armónico

Se dice que un sistema cualquiera, mecánico, eléctrico, neumático, etc. es un oscilador armónico si cuando se deja en libertad, fuera de su posición de equilibrio, vuelve hacia ella describiendo oscilaciones sinusoidales, o sinusoidales amortiguadas en torno a dicha posición estable.

El ejemplo es el de una masa colgada a un resorte. Cuando se aleja la masa de su posición de reposo, el resorte ejerce sobre la masa una fuerza que es proporcional al desequilibrio (distancia a la posición de reposo) y que está dirigida hacia la posición de equilibrio. Si se suelta la masa, la fuerza del resorte acelera la masa hacia la posición de equilibrio. A medida que la masa se acerca a la posición de equilibrio y que aumenta su velocidad, la energía potencial elástica del resorte se transforma en energía cinética de la masa. Cuando la masa llega a su posición de equilibrio, la fuerza será cero, pero como la masa está en movimiento, continuará y pasará del otro lado. La fuerza se invierte y comienza a frenar la masa. La energía cinética de la masa va transformándose ahora en energía potencial del resorte hasta que la masa se para. Entonces este proceso vuelve a producirse en dirección opuesta completando una oscilación.

Si toda la energía cinética se transformase en energía potencial y viceversa, la oscilación seguiría eternamente con la misma amplitud. En la realidad, siempre hay una parte de la energía que se transforma en otra forma, debido a la viscosidad del aire o porque el resorte no es perfectamente elástico. Así pues, la amplitud del movimiento disminuirá más o menos lentamente con el paso del tiempo. Se empezará tratando el caso ideal, en el cual no hay pérdidas. Se analizará el caso unidimensional de un único oscilador (para la situación con varios osciladores, véase movimiento armónico complejo).

Casos

• Oscilador armónico sin pérdidas

• Oscilador armónico amortiguado

• Oscilador sobreamortiguado

• Oscilador con amortiguamiento crítico

• Oscilador con amortiguamiento débil

• Oscilaciones forzadas

• Oscilador forzado y caos

• Oscilador de van der Pol

• Oscilador armónico torsional

CONSERVACIÓN DE LA ENERGÍA

La energía mecánica total de un sistema es constante cuando actúan dentro del sistema sólo fuerzas conservativas. Asimismo podemos asociar una función energía potencial con cada fuerza conservativa. Por otra parte, la energía mecánica se pierde cuando esta presentes fuerzas no conservativas, como la fricción.

En el estudio de la termodinámica encontraremos que la energía pude transformarse en energía interna del sistema. Por ejemplo, cuando un bloque desliza sobre una superficie rugosa, la energía mecánica perdida se transforma en energía interna almacenada temporalmente en el bloque y en la superficie, lo que se evidencia por un incremento mensurable en la temperatura del bloque. Veremos que en una escala submicroscópica esta energía interna está asociada a la vibración de los átomos en torno a sus posiciones de equilibrio. Tal movimiento atómico interno tiene energía cinética y potencial. Por tanto,

...

Descargar como (para miembros actualizados) txt (10 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com