Elementos Maximales Y Minimales
Enviado por carlos723 • 20 de Octubre de 2013 • 1.488 Palabras (6 Páginas) • 846 Visitas
ELEMENTOS MAXIMALES Y MINIMALES
Definicion:
En matemáticas, especialmente en teoría del orden, un elemento maximal de un conjunto parcialmente ordenado P es un elemento de P que no es menor que cualquier otro. El término elemento minimal se define de manera dual.
Sea (P, ≤) un conjunto parcialmente ordenado; m ∈ P es un elemento maximal de P si el único x ∈ P tal que m ≤ x es x = m.
La definición de elemento minimal se obtiene reemplazando ≤ por ≥.
Propiedades:
A primera vista parecería que m debería ser un elemento máximo, lo que no es siempre cierto: la definición de elemento maximal es algo más débil. De hecho, pueden existir elementos maximales sin que haya un máximo. La razón es que, en general, ≤ es sólo un orden parcial en P; si m es un maximal y p ∈ P, cabe la posibilidad de que ni p ≤ m ni m ≤ p, con lo que m no sería máximo. Esto permite, además, que haya más de un elemento maximal en un conjunto.
Sin embargo, si m ∈ P es maximal y P tiene un máximo, se cumplirá que máx(P) ≤ m; por definición de máximo se debe tener m ≤ máx(P) y por lo tanto m = máx(P); en otras palabras, un máximo, si existe, es también el único maximal.
No es difícil ver que si ≤ es un orden total en P, las nociones de máximo y maximal coinciden: sean m ∈ P un elemento maximal, y p ∈ P arbitrario; por la condición de orden total, o bien p ≤ m o bien m ≤ p; en el segundo caso se tendría p = m por definición de maximal, con lo cual p ≤ m, y por consiguiente, m = máx(P).
No siempre existen los elementos maximales, ni siquiera en el caso en que P esté totalmente ordenado.
Ejemplos:
Sea P = [0, ∞[ ⊆ R. Para todo m ∈ P se tiene x = m + 1 ∈ P pero m < x, con lo que ningún m puede ser maximal.
Sea P = {q ∈ Q | 1 ≤ q² ≤ 2}; puesto que la raíz cuadrada de 2 no es racional, este conjunto no tiene elemento maximal.
Sea A un conjunto con al menos dos elementos, y sea P = {{a} | a∈A}, parcialmente ordenado por inclusión. Todo elemento de P es a la vez maximal y minimal, y para cualesquiera {a}, {b} ∈ P distintos, ni {a} ⊆ {b}, ni {b} ⊆ {a} (con lo que no hay elemento máximo).
Sea P = {(x,y) ∈ R | 0 ≤ x ≤ 4, 0 ≤ y ≤ 4}, tomando (a, b) ≤ (c, d) si a ≤ c y b ≤ d. Entonces P tiene un único elemento maximal, (4,4), que a la vez es máximo.
Ejemplo:
Para el siguiente diagrama de Hasse, señale los elementos maximales y minimales.
Con este orden definido, se tiene que: h≤e pues tenemos un camino h-f-e que empieza en h y termina en e. i ≤a, pues el camino i-g-d-a que empieza en i y termina en a. i ¬ ≤ e, pues ningún camino empieza en i y termina en e. Se tiene además, que a y b son elementos maximales, pues no hay ningún elemento que sea mayor que ellos. Por su parte, el elemento j es un elemento minimal.
MAPAS DE KARNAUGH
Podemos definirlo como un método para encontrar la forma más sencilla de representar una función lógica.
Esto es encontrar la función que relaciona todas las variables disponibles, de tal modo que el resultado sea el que se está buscando.
Para esto vamos a aclarar tres conceptos que son fundamentales
a) Minitérmino : Es cada una de las combinaciones posibles entre todas las variables disponibles, por ejemplo con 2 variables obtienes 4 minitérminos; con 3 obtienes 8; con 4, 16 etc., como te darás cuenta se puede encontrar la cantidad
...