ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Enlaces Quimicos Inorganicos Y Organicos


Enviado por   •  13 de Octubre de 2012  •  3.354 Palabras (14 Páginas)  •  705 Visitas

Página 1 de 14

Teoría de los orbitales moleculares

La teoría de los orbitales moleculares (TOM) usa una combinación lineal de orbitales atómicos para formar orbitales moleculares, que abarcan la molécula entera. Estos orbitales son divididos frecuentemente en orbitales enlazantes, orbitales antienlazantes, y orbitales de no enlace. Un orbital molecular es simplemente un orbital de Schrödinger que incluye varios, pero frecuentemente sólo dos, núcleos. Si este orbital es del tipo en que los electrones tienen una mayor probabilidad de estar entre los núcleos que en cualquier otro lugar, el orbital será un orbital enlazante, y tenderá a mantener los núcleos cerca. Si los electrones tienden a estar presentes en un orbital molecular en que pasan la mayor parte del tiempo en cualquier lugar excepto entre los núcleos, el orbital funcionará como un orbital antienlazante, y realmente debilitará el enlace. Los electrones en orbitales no enlazantes tienden a estar en orbitales profundos (cerca a los orbitales atómicos) asociados casi enteramente o con un núcleo o con otro y entonces pasarán igual tiempo entre los núcleos y no en ese espacio. Estos electrones no contribuyen ni detractan la fuerza del enlace.

Comparación de las teorías del enlace de valencia y de los orbitales moleculares

En algunos aspectos, la teoría del enlace de valencia es superior a la teoría de orbitales moleculares. Cuando se aplica a la molécula más simple de dos electrones, H2, la teoría del enlace de valencia, incluso al nivel más simple de la aproximación de Heitler-London, produce una aproximación más cercana a la energía de enlace, y provee una representación más exacta del comportamiento de los electrones al formarse y romperse los enlaces químicos. En contraste, la teoría de orbitales moleculares simple predice que la molécula de hidrógeno se disocia en una superposición lineal de átomos de hidrógeno, y iones positivos y negativos de hidrógeno, un resultado completamente contrario a la evidencia física. Esto explica en parte por qué la curva de energía total versus la distancia interatómica del método de orbitales de valencia yace por encima de la curva del método de orbitales moleculares a todas las distancias y, más particularmente, para distancias mucho más grandes. Esta situación surge para todas las moléculas diatómicas homonucleares y es particularmente un problema para el F2, para el que la energía mínima de la curva con la teoría de orbitales moleculares es aún mayor en energía que la energía de los dos átomos de flúor no enlazados.

Los conceptos de hibridación son versátiles, y la variabilidad en el enlace en muchos compuestos orgánicos es tan modesta que la teoría del enlace permanece como una parte integral del vocabulario del químico orgánico. Sin embargo, el trabajo de Friedrich Hund, Robert Mulliken, y Gerhard Herzberg mostró que la teoría de orbitales moleculares provee una descripción más apropiada de las propiedades espectroscópicas, magnéticas y de ionización de las moléculas. Las deficiencias de la teoría del enlace se hicieron aparentes cuando las moléculas hipervalentes(por ejemplo, el PF5) fueron explicadas sin el uso de los orbitales "d" que eran cruciales en el esquema de enlace basado en hibridación, propuesto para tales moléculas por Pauling. Loscomplejos metálicos y compuestos deficientes en electrones (como el diborano) también resultaron ser mejor descritos por la teoría de orbitales moleculares, aunque también se han hecho descripciones usando la teoría del enlace de valencia.

En la década de 1930, los dos métodos competían fuertemente hasta que se observó que ambas eran aproximaciones a una teoría mejor. Si se toma la estructura de enlace de valencia simple y se mezcla en todas las estructuras covalentes e iónicas posibles que surgen de un juego particular de orbitales atómicos, se llega a lo que se llama la función de onda de interacción de configuración completa. Si se toma la descripción de orbital molecular simple del estado fundamental y se combina dicha función con las funciones que describen todos los estados excitados posibles usando los orbitales no ocupados que surgen del mismo juego de orbitales atómicos, también se llega a la función de onda de interacción de configuración completa. Puede verse que la aproximación de orbital molecular simple da demasiado peso a las estructuras iónicas, mientras que la aproximación de enlace de valencia simple le da demasiado poco. Esto puede ser descrito diciendo que la aproximación de orbitales moleculares simple es demasiado deslocalizada, mientras que la aproximación de enlaces de valencia es demasiado localizado.

Estas dos aproximaciones son ahora observadas como complementarias, cada una proveyendo sus propias perspectivas en el problema del enlace químico. Los cálculos modernos en química cuántica generalmente empiezan a partir de (pero finalmente van más allá) un orbital molecular en vez de una aproximación de enlace de valencia, no por algún tipo de superioridad intrínseca de la primera, sino porque la aproximación de orbitales moleculares es mucho más rápidamente adaptable a computación numérica. Sin embargo, ahora hay mejores programas de enlace de valencia disponibles.

[editar]Enlaces en fórmulas químicas

La tridimensionalidad de los átomos y moléculas hace difícil el uso de una sola técnica para indicar los orbitales y enlaces. En la fórmula molecular, los enlaces químicos (orbitales enlazantes) entre átomos están indicados por varios métodos diferentes de acuerdo al tipo de discusión. Algunas veces, se desprecian completamente. Por ejemplo, en química orgánica, la fórmula molecular del etanol (un compuesto en bebidas alcohólicas) puede ser escrito en papel como isómeros conformacionales, tridimensional, completamente bidimensional (indicando cada enlace con direcciones no tridimensionales), bidimensional comprimida (CH3–CH2–OH), separando el grupo funcional del resto de la molécula (C2H5OH), o sus constituyentes atómicos (C2H6O), de acuerdo a lo que se esté discutiendo. Algunas veces, incluso se marcan los electrones no enlazantes de la capa de valencia (con las direcciones aproximadas bidimensionalmente, estructura de Lewis). Algunos químicos pueden también representar los orbitales respectivos.

[editar]Enlaces químicos

Longitudes de enlace típicas, en pm,

y energía de enlace en kJ/mol.

Información recopilada de [1].

Enlace Longitud

(pm) Energía

(kJ/mol)

H — Hidrógeno

H–H 74 436

H–C 109 413

H–N 101 391

H–O 96 366

H–F 92 568

H–Cl 127 432

H–Br 141 366

C — Carbono

C–H 109 413

C–C 154 348

...

Descargar como (para miembros actualizados) txt (23 Kb)
Leer 13 páginas más »
Disponible sólo en Clubensayos.com