ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ensayo Y Ecologia Medio Ambiente


Enviado por   •  28 de Agosto de 2013  •  1.835 Palabras (8 Páginas)  •  828 Visitas

Página 1 de 8

SOLUCION TALLER

Solución punto 1

*Obtenga los siguientes parámetros: la tensión pico a pico (Vpp), la tensión mínima (Vmin), la tensión máxima (Vmax), el valor eficaz de la tensión (Vrms), el valor medio de la tensión (VAV), el valor medio absoluto de la tensión (VAAV), el valor eficaz de la componente fundamental, la distorsión armónica total, el factor de forma y el factor de cresta de las siguientes señales de tensión:

v(t)=150 2cos(wt)

V_pp= 2V_p= 2(150√2) = 300√2 [V_pp ]

V_min=-(150√2) [v]

V_max= (150√2) [v]

V_rms= (150√2)/√2 =150 [V_rms ]

V_AV= 0 [v]

V_(AV.abs)= 1/T ∫_0^T▒|150√2 cos⁡〖(wt)〗 | □(24&dt)

= 1/T [∫_((-Π)/2w)^(Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ] □(24&dt)〗-∫_(Π/2w)^(3Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ] □(24&dt)〗]

= 1/T [(150√2)/w ├ sin⁡〖(wt)〗 ┤| (Π/2w)¦((-Π)/2w)-(150√2)/w ├ sin⁡〖(wt)〗 ┤| (3Π/2w)¦(Π/2w)]

=1/T [(150√2)/w(4)]=(150√2)/2Π(4)= (150√2)/Π(2)=

= (300√2)/Π [v]

Vrms1=(150√2)/√2 =150 [V_rms ]

Vrmsh=√(150^2-150^2)=0

DATv=THDv=(Vrmsh/Vrmas1)*100=0

*F.F=V_rms/( V_(AV.abs) ) =150Π/(300√2) =Π/( 2√2) = 1.110

*F.C=V_màx/( V_rms ) = (150√2)/150 =√2 = 1.414

b) vt150√2cost

V_pp= 150√2 [V_pp ]

V_min=0[v]

V_max= 150√2 [v]

〖V_rms〗^21/T [∫_((-Π)/2w)^(Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ]^2 □(24&dt)〗+∫_(Π/2w)^(3Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ]^2 □(24&dt)〗]

( 1)/T 〖(150√2 )〗^2 [( 1t/2 ├ +sin⁡(2wt)/4w ) ┤| (Π/2w)¦((-Π)/2w)+( 1t/2+sin⁡(2wt)/4w ├ )┤| (3Π/2w)¦(Π/2w)]

〖V_rms〗^2( 1)/T 〖(150√2 )〗^2 [(Π/4w+Π/4w)+2Π/4w]

〖V_rms〗^2( 1)/T 〖(150√2 )〗^2 [Π/w]

〖V_rms〗^2( 1)/2 〖(150√2 )〗^2

〖 V〗_rms= (150√2)/√2 =150 [V_rms ]

V_(AV.abs)= 1/T ∫_0^T▒|150√2 cos⁡〖(wt)〗 | □(24&dt)

= 1/T [∫_((-Π)/2w)^(Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ] □(24&dt)〗+∫_(Π/2w)^(3Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ] □(24&dt)〗]

= 1/T [(150√2)/w ├ sin⁡〖(wt)〗 ┤| (Π/2w)¦((-Π)/2w)+(150√2)/w ├ sin⁡〖(wt)〗 ┤| (3Π/2w)¦(Π/2w)]

=1/T [(150√2)/w(4)]=(150√2)/2Π(4)= (150√2)/Π(2)=

= (300√2)/Π [v]

〖* V〗_AV =V_(AV.abs)= (300√2)/Π [v]

Vrms1=(150√2)/√2 =150 [V_rms ]

Vrmsh=√(150^2-150^2)=0

DATv=THDv=(Vrmsh/Vrmas1)*100=0

*F.F=V_rms/( V_(AV.abs) ) =150Π/(300√2) =Π/( 2√2) = 1.110

*F.C=V_màx/( V_rms ) = (150√2)/150 =√2 = 1.414

c)

v(t)={(150√2 cos⁡(wt) si v(t)≥0)¦( 0 si v(t)<0 )}

V_pp= 150√2 [V_pp ]

V_min=0 [v]

V_max= (150√2) [v]

〖V_rms〗^21/T [∫_((-Π)/2w)^(Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ]^2 □(24&dt)〗+∫_(Π/2w)^(3Π/2w)▒〖0□(24&dt)〗]

V_rms= (150√2)/2 =75√2 [V_rms ]

V_(AV.abs)= 1/T ∫_0^T▒|150√2 cos⁡〖(wt)〗 | □(24&dt)

= 1/T [∫_((-Π)/2w)^(Π/2w)▒〖[150√2 cos⁡〖(wt)〗 ] □(24&dt)〗]

= (150√2)/Π [v]

〖* V〗_AV =V_(AV.abs)= (150√2)/Π [v]

Vrms1=(150√2)/2 =75√2 [V_rms ]

Vrmsh=√(75√2^2-75√2^2)=0

DATv=THDv=(Vrmsh/Vrmas1)*100=0

*F.F=V_rms/( V_(AV.abs) ) =(75√2 Π)/(150√2) =Π/( 2) = 1.571

*F.C= V_màx/( V_rms ) = (150√2)/(75√2) =2

d)

sea v(t)={(〖 v〗_p si 0<t<T/2)¦( 〖-v〗_(p ) si T/2<t<T )}

V_pp= 2V_p [V_pp ]

V_min=-V_p [v]

V_max= V_p [v]

V_AV= 0 [v]

〖V_rms〗^21/T [∫_0^(T/2)▒〖[V_p ]^2 □(24&dt)〗+∫_(T/2)^T▒〖[V_p ]^2 □(24&dt)〗]

( 1)/T [( V_P^2 t ├ )┤| (T/2)¦0+(V_P^2 t ├ )┤| T¦(T/2)]

〖V_rms〗^2( 1)/T [V_P^2 (T/2)+V_P^2 (T/2)]

〖V_rms〗^2( 1)/T [V_P^2 T]

〖 V〗_rms= V_p [V_rms ]

Vrms1=(4Vp/√2 Π)

Vrmsh=√(V_P^2-(16V_P^2/√2 Π))=0.435Vp

DATv=THDv=(Vrmsh/Vrmas1)*100=(0.435Vp/(4Vp/√2 Π))*100=0.483164*100=48.3164

V_(AV.abs)= 1/T ∫_0^T▒|V(t)| □(24&dt)

= 1/T [∫_0^(T/2)▒〖[V_p ] □(24&dt)〗-∫_(T/2)^T▒〖[-V_p ] □(24&dt)〗]

= 1/T [├ V_p t┤| (T/2)¦0+├ V_p t┤| T¦(T/2)]

=1/T [V_p (T/2)+V_p (T/2)]=

= V_p [v]

*F.F=( V_p)/(〖 V〗_p ) =1

*F.C=( V_p)/(〖 V〗_p ) =1

e)

sea v(t)={(□((〖 V〗_p )/t_0 ) t si 0<t<t_0)¦( 0 si 〖 t〗_0<t<T )}

V_pp= V_p [V_pp ]

V_min=0 [v]

V_max= V_p [v]

〖V_rms〗^21/T [∫_0^(t_0)▒〖[□((〖 V〗_p )/t_0 ) t]^2 □(24&dt)〗+∫_(t_0)^T▒〖[0]^2 □(24&dt)〗]

( 1)/T [( □((v_p^2 )/(〖3t〗_0^2 ))t^3 ├ )┤| t_0¦0]

〖V_rms〗^2( 1)/T [( □((v_p^2 t_0 )/3) )] [V_rms ]

〖 V〗_rms=V_p/√3 (√(t_0/T) ) [V_rms ] si t_0= T entonces 〖 V〗_rms=V_p/√3 [V_rms ]

Ahora

*V_AV= V_p/2 [v]

〖* V〗_AV =V_(AV.abs)=V_p/2 [v]

Vrms1=(Vp/2√2 Π)

Vrmsh=√(V_P^2-(V_P^2/8 Π* Π)=0.698094Vp

DATv=THDv=(Vrmsh/Vrmas1)*100=0.698094Vp/(Vp/2√2 Π)=6.2031*100=620.31

*F.C=( √3 V_p)/(〖 V〗_p ) =√3

*F.F=( 2 V_p/√3)/(〖 V〗_p ) =2/√3

f)

sea v(t)={(V_p/(T/2) t- V_p si 0<t<T/2)¦( -(v_(pt-2v_(p ) ) )si T/2<t<T )}

V_pp= 2V_p [V_pp ]

V_min=-V_p [v]

V_max= V_p [v]

V_AV= 0 [v]

〖V_rms〗^21/T [∫_0^(T/2)▒〖[□((〖 2V〗_p )/T) t-V_p ]^2 □(24&dt)〗+∫_(T/2)^T▒〖[□((〖

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com