ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estructura Del Atomo


Enviado por   •  27 de Agosto de 2013  •  2.132 Palabras (9 Páginas)  •  499 Visitas

Página 1 de 9

ESTRUCTURA DEL ATOMO, MODELOS ATOMICOS, MEZCLAS, CONVINACIONES Y ALEACIONES

El átomo es la unidad de materia más pequeña de un elemento químico que mantiene su identidad o sus propiedades, y que no es posible dividir mediante procesos químicos. Está compuesto por un núcleo atómico, en el que se concentra casi toda su masa, rodeado de una nube de electrones. El núcleo está formado por protones, con carga positiva, y neutrones, eléctricamente neutros. Los electrones, cargados negativamente, permanecen ligados a este mediante la fuerza electromagnética.

ESTRUCTURA DEL ATOMO

En el átomo distinguimos dos partes: el núcleo y la corteza. El núcleo es la parte central del átomo y contiene partículas con carga positiva, los protones, y partículas que no poseen carga eléctrica, es decir son neutras, los neutrones. La masa de un protón es aproximadamente igual a la de un neutrón.

Todos los átomos de un elemento químico tienen en el núcleo el mismo número de protones. Este número, que caracteriza a cada elemento y lo distingue de los demás, es el número atómico y se representa con la letra Z.

- La corteza es la parte exterior del átomo. En ella se encuentran los electrones, con carga negativa. Éstos, ordenados en distintos niveles, giran alrededor del núcleo. La masa de un electrón es unas 2000 veces menor que la de un protón.

Los átomos son eléctricamente neutros, debido a que tienen igual número de protones que de electrones. Así, el número atómico también coincide con el número de electrones.

Isótopos

La suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A. Aunque todos los átomos de un mismo elemento se caracterizan por tener el mismo número atómico, pueden tener distinto número de neutrones.

Llamamos isótopos a las formas atómicas de un mismo elemento que se diferencian en su número másico. Para representar un isótopo, hay que indicar el número másico (A) propio del isótopo y el número atómico (Z), colocados como índice y subíndice, respectivamente, a la izquierda del símbolo del elemento.

MODELOS ATOMICOS

Año Científico Descubrimientos experimentales Modelo atómico

1808

John Dalton

Durante el Siglo XVIII y principios del XIX algunos científicos habían investigado distintos aspectos de las reacciones químicas, obteniendo las llamadas leyes clásicas de la Química.

La imagen del átomo expuesta por Dalton en su teoría atómica, para explicar estas leyes, es la de minúsculas partículas esféricas, indivisibles e inmutables,

iguales entre sí en cada elemento químico.

1897

J.J. Thomson

Demostró que dentro de los átomos hay unas partículas diminutas, con carga eléctrica negativa, a las que se llamó electrones.

De este descubrimiento dedujo que el átomo debía de ser una esfera de materia cargada positivamente, en cuyo interior estaban incrustados los electrones.

(Modelo atómico de Thomson.)

1911

E. Rutherford

Demostró que los átomos no eran macizos, como se creía, sino que están vacíos en su mayor parte y en su centro hay un diminuto núcleo.

Dedujo que el átomo debía estar formado por una corteza con los electrones girando alrededor de un núcleo central cargado positivamente.

(Modelo atómico de Rutherford.)

1913

Niels Bohr

Espectros atómicos discontinuos originados por la radiación emitida por los átomos excitados de los elementos en estado gaseoso.

Propuso un nuevo modelo atómico, según el cual los electrones giran alrededor del núcleo en unos niveles bien definidos.

(Modelo atómico de Bohr.)

CONFIGURACIÓN ELECTRONICA DEL ATOMO

1. Existen 7 niveles de energía o capas donde pueden situarse los electrones, numerados del 1, el más interno, al 7, el más externo.

2. A su vez, cada nivel tiene sus electrones repartidos en distintos subniveles, que pueden ser de cuatro tipos: s, p, d, f.

3. En cada subnivel hay un número determinado de orbitales que pueden contener, como máximo, 2 electrones cada uno. Así, hay 1 orbital tipo s, 3 orbitales p, 5 orbitales d y 7 del tipo f. De esta forma el número máximo de electrones que admite cada subnivel es: 2 en el s; 6 en el p (2 electrones x 3 orbitales); 10 en el d (2 x 5); 14 en el f (2 x 7).

La distribución de orbitales y número de electrones posibles en los 4 primeros niveles se resume en la siguiente tabla:

Niveles de energía 1 2 3 4

Subniveles s s p s p d s p d f

Número de orbitales de cada tipo 1 1 3 1 3 5 1 3 5 7

Denominación de los orbitales 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

Número máximo de electrones en los orbitales 2 2 - 6 2 - 6 - 10 2- 6- 10- 14

Número máximo de electrones por nivel 2 8 18 32

La configuración electrónica en la corteza de un átomo es la distribución de sus electrones en los distintos niveles y orbitales. Los electrones se van situando en los diferentes niveles y subniveles por orden de energía creciente hasta completarlos. Es importante saber cuantos electrones existen en el nivel más externo de un átomo pues son los que intervienen en los enlaces con otros átomos para formar compuestos.

MEZCLAS

a) Mezclas heterogéneas: no son uniformes; en algunos casos, puede observarse la discontinuidad a simple vista (sal y carbón, por ejemplo); en otros casos, debe usarse una mayor resolución para observar la discontinuidad.

Mezclas homogéneas: son totalmente uniformes (no presentan discontinuidades al ultramicroscopio) y presentan iguales propiedades y composición en todo el sistema, algunos ejemplos son la salmuera, el aire. Estas mezclas homogéneas se denominan soluciones.

El límite a partir del cual se distinguen los sistemas heterogéneos de los sistemas homogéneos lo constituye precisamente el ultramicroscopio. Los diferentes sistemas homogéneos que constituyen el sistema heterogéneo se denominan fases. Existen gran número de métodos para separar los componentes que forman una mezcla; en realidad, cada mezcla implicará el uso de uno o más métodos particulares para su separación en los componentes individuales. Describiremos brevemente solo algunos de estos métodos:

filtración: permite separar sólidos suspendidos en un líquido. Implica el pasaje de todo el líquido a través de un filtro, una placa

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com