ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

GEOMETRIA FRACTAL


Enviado por   •  9 de Abril de 2015  •  1.617 Palabras (7 Páginas)  •  237 Visitas

Página 1 de 7

A GEOMETRIA FRACTAL

Geometría Fractal es geometría que no distingue entre conjunto matemático y objeto natural. Este nuevo paradigma engulle paradigmas anteriores proyectando un modelo que inagura una nueva zona o región de lo real.

Tómese un número complejo, multiplíquese por sí mismo y súmese el número inical; tómese el resultado, multiplíquese por sí mismo, súmese el inicial... y así sucesivamente. A esta iteración en principio errática se le asignan puntos sobre un plano. Disponga papel, lápiz y moneda con cara y cruz, fijemos ciertas reglas para cada lanzamieno; por ejemplo desplazar el punto X centímetros al noreste si sale cara y acercarse un 50% al centro inicial si sale cruz. Se perfila, progresiva y sorprendentemente el dibujo de la hoja de helecho (véase fig. 1) mientras el ordenador hace esta tarea menos ardua en pantalla y en décimas de segundo.

“Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”

BREVE HISTORIA DE LA GEOMETRÍA FRACTAL:Si Mandelbrot representa el enfoque moderno de la matemática y es considerado padre de la geometría fractal debemos remontarnos a 1935 cuando se funda la célebre escuela Bourbaki, organizadora del nuevo pensamiento matemático. Sus miembros fundadores eran: André Weil, Henri Cartan, Claude Chevalley, Jean Coulomb, Jean Delsarte, Jean Dieudonné, Charles Ehresmann, René de Possel y Szolem Mandelbrojt, colaboradores de Nicolas Bourbaki.

Los objetivos fundamentales de Bourbaki eran la reconstrucción del

edificio matemático sobre bases axiomáticas. Sus trabajos cristalizaron en la redacción de una enciclopedia, “Éléments de Mathematique”.

En 1945, Szolem recomienda a su sobrino Benoît la lectura de un escrito de 300 páginas de Gaston Julia (1893-1978) titulado “Mémoire sur l’iteration des fonctions rationelles”, precursor de la moderna teoría de sistemas dinámicos. Y, de acuerdo con las ideas de la escuela de la que formaba parte, añadió: “Olvida la geometría”.

El discípulo Mandelbrot no se interesó mucho por la lectura recomendada por su maestro, bien por la clase de problemas planteados por su tío acerca de aquella, o porque Benoît enfocaba las Matemáticas desde un punto de vista muy diferente. Adicionalmente, hizo caso omiso de la recomendación acerca de la geometría. Por otra parte, Benoît recobró interés por la publicación mencionada en 1970. Con ayuda de las facilidades computacionales puestas a su disposición por IBM a partir de 1957 en el centro de investigación Thomas J. Watson, contribuyó a crear las ilustraciones de su ensayo de 1975. Y, curiosamente, en 1980, con ayuda de un ordenador VAX, pantalla Tektronix y hardcopy Versatac, sorprendió a la comunidad científica con el primer dibujo detallado de un gráfico deducido de la evolución del sistema dinámico en el campo complejo.

Barnsley descubre esta dinámica en 1985 sin usar números complejos recurriendo a la aleatoriedad del juego del caos.

Fractal

En la naturaleza también aparece la geometría fractal, como en este romanescu.

Un fractal es un objeto semigeométrico

cuya estructura básica, fragmentada o irregular, se repite a diferentes escalas.[] El término fue propuesto por el matemático Benoît Mandelbrot en 1975 y deriva del Latín fractus, que significa quebrado o fracturado. Muchas estructuras naturales son de tipo fractal.

A un objeto geométrico fractal se le atribuyen las siguientes características:[]

* Es demasiado irregular para ser descrito en términos geométricos tradicionales.

* Posee detalle a cualquier escala de observación.

* Es auto similar (exacta, aproximada o estadística).

* Su dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.

* Se define mediante un simple algoritmo recursivo.

No nos basta con una sola de estas características para definir un fractal. Por ejemplo, la recta real no se considera un fractal, pues a pesar de ser un objeto auto similar carece del resto de características exigidas.

Un fractal natural es un elemento de la naturaleza que puede ser descrito mediante la geometría fractal. Las nubes, las montañas, el sistema circulatorio, las líneas costeras[] o los copos de nieve son fractales naturales. Esta representación es aproximada, pues las propiedades atribuidas a los objetos fractales ideales, como el detalle infinito, tienen límites en el mundo natural.

Los ejemplos clásicos

Para encontrar los primeros ejemplos de fractales debemos remontarnos a finales del siglo XIX: en 1872 apareció la función de Weierstrass, cuyo grafo hoy en día consideraríamos fractal, como ejemplo de función continua pero no

diferenciable en ningún punto.

Sucesivos pasos de la construcción de la curva de Koch

Posteriormente aparecieron ejemplos con propiedades similares pero una definición más geométrica. Dichos ejemplos podían construirse partiendo de una figura inicial (semilla), a la que se aplicaban una serie de construcciones geométricas sencillas. La serie de figuras obtenidas se aproximaba a una figura límite que correspondía al que hoy llamamos conjunto fractal. Así, en 1904, Helge von Koch definió una curva con propiedades similares a la de Weierstrass: el copo de nieve de Koch. En 1915, Waclaw Sierpinski construyó su triángulo y, un año después, su alfombra.

Construcción de la alfombra de Sierpinski: |

| | | | | |

Paso 1 (semilla) | Paso 2 | Paso 3 | Paso 4 | Paso 5 | |

Estos conjuntos

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com