ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Interferencia Y Difracción


Enviado por   •  2 de Septiembre de 2014  •  2.302 Palabras (10 Páginas)  •  303 Visitas

Página 1 de 10

Interferencia y difracción

La naturaleza ondulatoria de la luz

Julio López / Rol: 201141502-7 / julio.lopezr@alumnos.usm.cl / Grupo 459-A

César Cea / Rol: 201104568-8 / cesar.cea@alumnos.usm.cl / Grupo 459-A

Resultados

λ [mm] 6,7×〖10〗^(-4)

L±0,5 [mm] 2100

Tabla 1. Longitud de onda λ del láser utilizado como fuente luz monocromática. L es la distancia portaobjeto-pantalla con la cual se desarrollarán los fenómenos de difracción e interferencia.

Difracción de Fraunhofer

Se realizaron 3 mediciones para cada rendija simple:

n [-] x±0,05 [mm] b [mm]

Rendija A

1 14,1 0,0998

2 28,2 0,0998

3 42,4 0,0996

Rendija B

1 6,4 0,220

2 14,9 0,189

3 20,5 0,206

Rendija C

1 3,3 0,426

2 6,7 0,420

3 10,2 0,414

Tabla 2. Obtención del ancho b de las rendijas en función de los parámetros n,λ,x y L según la ecuación 1. La variable x fue medida con un pie de metro.

Experimento de Young

Bajo las mismas condiciones que la parte anterior, se obtuvo esta vez la separación entre las aberturas para 3 rendijas dobles:

n [-] Δy ±0,05 [mm] a [mm]

Rendija D

1 5,3 0,265

2 11,2 0,251

3 17,2 0,245

Rendija E

1 2,5 0,563

2 5,5 0,512

3 8,9 0,474

Rendija F

1 1,2 1,173

2 3,3 0,853

3 4,5 0,938

Tabla 3. Obtención de la separación entre aberturas a de las rendijas en función de los parámetros n,λ,x y L según la ecuación 2. La variable Δy fue medida con un pie de metro.

Discusión y análisis

Difracción de Fraunhofer

En esta primera parte de la experiencia se plantea medir, en base a la observación del fenómeno de difracción, anchos de rendijas simples.

Cabe destacar que las condiciones experimentales adecuadas para la observación de la difracción según Fraunhofer se han verificado con anterioridad: La fuente de luz, el portaobjeto y la pantalla están lo suficientemente alejados como para considerar paralelas todas las líneas del láser a la rendija y todas las líneas del obstáculo a un punto de la pared.

De acuerdo con la óptica geométrica, cuando un objeto opaco se interpone entre una fuente puntual de luz y una pantalla, el contorno de la imagen proyectada está totalmente definido (nada de luz incide en la pantalla en los puntos que están dentro de la sombra). Sin embargo, en la experiencia se observó la formación de franjas claras y oscuras que intercaladas, constituyen un patrón de difracción.

Se observó también, que la intensidad del patrón disminuye rápidamente a medida que las franjas se alejan del punto central, llegando a punto tal que se vuelven imperceptibles a la vista. Se notó además que, a medida que el ancho de la ranura disminuía, la separación entre franjas claras aumentaba.

Por último, se notó que a medida que el ancho de la ranura disminuía, el ancho de la franja brillante central aumentaba y además, el patrón de difracción se volvía más amplio.

Ahora bien, los mínimos de difracción (intensidad cero) se obtienen mediante la siguiente relación:

b/n x/√(x^2+L^2 )=λ [mm]

Donde n es el orden de la refracción (número de mínimos) y toma los valores ±1,±2,±3,….

Por lo tanto, el ancho de la rendija se calcula mediante:

b=nλ √(x^2+L^2 )/x [mm] (ecuación 1)

Donde x es la distancia entre el n-ésimo mínimo y el punto central del patrón.

En esta experiencia se midió la distancia de los tres primeros mínimos al centro en cada una de las rendijas (ver Tabla 2). En base a esos resultados, se calcula un promedio de los anchos obtenidos y se compara con el valor entregado por el fabricante:

b ̅ [mm] b_teórico [mm] error

Rendija A

0,0997 0,1 0,3 %

Rendija B

0,205 0,2 2,44 %

Rendija C

0,420 0,4 4,76 %

Tabla 4. Anchos medidos de las rendijas y sus errores porcentuales respecto a los valores verdaderos.

Los errores son todos menores al 5%, sin embargo en la práctica, hay muchas fuentes de error, dentro de la cuales se destaca la “irregular” forma del patrón de difracción. Las franjas tenían formas curvas que dificultaban definir el centro de cada una de ellas, además, sus contornos difusos hacían esto aún más complicado. Con lo anterior, la medida de x se ve sumamente alterada.

También afectan en este sentido los instrumentos de medición. El pie de metro tiene una resolución de 0,05 [mm] y la cinta métrica 0,5 [mm]. El orden de magnitud de la longitud de onda está muy lejos de dichas resoluciones. Lo anterior es fundamental ya que x y L son las dos únicas variables dentro de la ecuación 1 que presentan un error instrumental asociado (en cuanto a λ, el fabricante no da a conocer el error del dato, se considerará como verdadero).

Los errores entonces se consideran sistemáticos (interactuarán consistentemente con el sistema y no es posible eliminarlos por simple repetición de las mediciones).

Por otro lado, y cómo se mencionó anteriormente, a medida que se disminuye el ancho de la ranura, la distancia entre los mínimos aumenta (lo que se comprueba con los valores vistos en la Tabla 2). De aquí se extiende entonces que si b=λ, no se producen mínimos y la pantalla se ve totalmente iluminada, análogamente si b<λ no hay difracción.

Experimento de Young

En esta parte de la experiencia se plantea determinar, a partir de la observación del fenómeno de interferencia, la separación en rendijas dobles.

Es importante mencionar que antes de realizar las mediciones se han verificado las condiciones experimentales necesarias para la observación de dicho fenómeno: La distancia L del portaobjeto (ranura) a la pared (pantalla) es tan grande en comparación con la distancia "a" entre las ranuras que los rayos luminosos hacia la pantalla se consideran paralelos.

En la pared se observó una sucesión de franjas brillantes y oscuras, llamadas franjas de interferencia, prácticamente paralelas a las rendijas utilizadas, con un punto central donde la intensidad era mayor, debido a que en ese punto las ondas han recorrido el mismo camino y se encuentran en fase.

Las franjas claras corresponden entonces al proceso de interferencia constructiva, donde hay una compensación entre las amplitudes producto de un desfase igual a un número entero de longitudes de onda. Para las franjas oscuras que se observaron, corresponde hablar de inferencia destructiva, donde hay carencia de luz producto de un desfase

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com