ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Limite De X


Enviado por   •  14 de Octubre de 2013  •  400 Palabras (2 Páginas)  •  263 Visitas

Página 1 de 2

-lim┬(x -3)⁡〖(x^2+x-6)/(x^2-9)〗

When we have such a limit, we use the factorization

Up we find a value that is multiplied "Y" and added "x". The values --2 and +3. So would:

((x+3)(x-2))/((x-3)(x+3))=

Down we use the square root of both terms. Change the sign to negative and the other remains positive

((x+3)(x-2))/((x-3)(x+3))=

Divide and replace -3 in X

(-3-2 )/(-3-3)=(-5)/(-6)

=5/6

lim┬(x -3)⁡〖(x^2+x-6)/(x^2-9)〗

When we have such a limit, we use the factorization

Up we find a value that is multiplied "Y" and added "x". The values --2 and +3. So would:

((x+3)(x-2))/((x-3)(x+3))=

Down we use the square root of both terms. Change the sign to negative and the other remains positive

((x+3)(x-2))/((x-3)(x+3))=

Divide and replace -3 in X

(-3-2 )/(-3-3)=(-5)/(-6)

=5/6

lim┬(x -3)⁡〖(x^2+x-6)/(x^2-9)〗

When we have such a limit, we use the factorization

Up we find a value that is multiplied "Y" and added "x". The values --2 and +3. So would:

((x+3)(x-2))/((x-3)(x+3))=

Down we use the square root of both terms. Change the sign to negative and the other remains positive

((x+3)(x-2))/((x-3)(x+3))=

Divide and replace -3 in X

(-3-2 )/(-3-3)=(-5)/(-6)

=5/6

lim┬(x -3)⁡〖(x^2+x-6)/(x^2-9)〗

When we have such a limit, we use the factorization

Up we find a value that is multiplied "Y" and added "x". The values --2 and +3. So would:

((x+3)(x-2))/((x-3)(x+3))=

Down we use the square root of both terms. Change the sign to negative and the other remains positive

((x+3)(x-2))/((x-3)(x+3))=

Divide and replace -3 in X

(-3-2 )/(-3-3)=(-5)/(-6)

=5/6

lim┬(x -3)⁡〖(x^2+x-6)/(x^2-9)〗

When we have such a limit, we use the factorization

Up we find a value that is multiplied "Y" and added "x". The values --2 and +3. So would:

((x+3)(x-2))/((x-3)(x+3))=

Down we use the square root of both terms. Change the sign to negative and the other remains positive

((x+3)(x-2))/((x-3)(x+3))=

Divide and replace -3 in X

(-3-2 )/(-3-3)=(-5)/(-6)

=5/6

lim┬(x -3)⁡〖(x^2+x-6)/(x^2-9)〗

When we have such a limit, we use the factorization

Up we find a value that is multiplied "Y" and added "x". The values --2 and +3. So would:

((x+3)(x-2))/((x-3)(x+3))=

Down we use the square root of both terms. Change the sign to negative and the other remains positive

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com