ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Los Numeros Naturales


Enviado por   •  17 de Enero de 2014  •  1.369 Palabras (6 Páginas)  •  274 Visitas

Página 1 de 6

Indaga acerca de los números naturales y luego redacta una síntesis que contenga las siguientes informaciones:

Historias

Antes de que surgieran los números para la representación de cantidades, el ser humano usó otros métodos para contar, utilizando para ello objetos como piedras, palitos de madera, nudos de cuerdas, o simplemente los dedos. Definición en teoría de conjuntos.

Definición

En teoría de conjuntos se define al conjunto de los números naturales como el mínimo conjunto que es inductivo. La idea es que se pueda contar haciendo una biyección desde un número natural hasta el conjunto de objetos que se quiere contar. Es decir, para dar la definición de número 2, se requiere dar un ejemplo de un conjunto que contenga precisamente dos elementos. Esta definición fue proporcionada por Bertrand Russell, y más tarde simplificada por Von Neumann quien propuso que el candidato para 2 fuera el conjunto que contiene solo a 1 y a 0.

Formalmente, un conjunto se dice que es un número natural si cumple

1. Para cada ,

2. La relación es un orden total estricto en

3. Todo subconjunto no vacío de tiene elementos mínimo y máximo en el orden

Se intenta pues, definir un conjunto de números naturales donde cada elemento respete las convenciones anteriores. Primero se busca un conjunto que sea el representante del 0, lo cual es fácil ya que sabemos que no contiene elementos. Luego se definen los siguientes elementos de una manera ingeniosa con el uso del concepto de sucesor. - Entonces que el conjunto vacío es un número natural que se denota por y que cada número natural tiene un sucesor denotado como . Estas ideas quedan formalizadas mediante las siguientes expresiones:

a) Concepto y ejemplos de Números Naturales.

Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto.

Los números naturales son infinitos. El conjunto de todos ellos se designa por N:

N = {0, 1, 2, 3, 4,…, 10, 11, 12,…}

El cero, a veces, se excluye del conjunto de los números naturales.

Además de cardinales (para contar), los números naturales son ordinales, pues sirven para ordenar los elementos de un conjunto:

1º (primero), 2º (segundo),…, 16º (decimosexto),…

Los números naturales son los primeros que surgen en las distintas civilizaciones, ya que las tareas de contar y de ordenar son las más elementales que se pueden realizar en el tratamiento de las cantidades.

b) Escribe las propiedades que se cumplen en las operaciones con Números Naturales (N).

Propiedades de la adición de Números Naturales

La adición de números naturales cumple las propiedades asociativa, conmutativa y elemento neutro.

1.- Asociativa:

Si a, b, c son números naturales cualesquiera se cumple que:

(a + b) + c = a + (b + c)

Por ejemplo:

(7 + 4) + 5 = 11 + 5 = 16

7 + (4 + 5) = 7 + 9 = 16

Los resultados coinciden, es decir,

(7 + 4) + 5 = 7 + ( 4 + 5)

2.-Conmutativa.

Si a, b son números naturales cualesquiera se cumple que:

a + b = b + a

En particular, para los números 7 y 4, se verifica que:

7 + 4 = 4 + 7

Gracias a las propiedades asociativa y conmutativa de la adición se pueden efectuar largas sumas de números naturales sin utilizar paréntesis y sin tener en cuenta el orden.

3.- Elemento neutro

El 0 es el elemento neutro de la suma de enteros porque, cualquiera que sea el número natural a, se cumple que:

a + 0 = a

Propiedades de la Multiplicación de Números Naturales

La multiplicación de números naturales cumple las propiedades asociativa, conmutativa, elemento neutro y distributivo del producto respecto de la suma.

1.-Asociativa

Si a, b, c son números naturales cualesquiera se cumple que:

(a • b) • c = a • (b • c)

Por ejemplo:

(3 • 5) • 2 = 15 • 2 = 30

3 • (5 • 2) = 3 • 10 = 30

Los resultados coinciden, es decir,

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com