ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Nùmeros Naturales


Enviado por   •  5 de Noviembre de 2011  •  2.217 Palabras (9 Páginas)  •  3.447 Visitas

Página 1 de 9

INTRODUCCION

La matemática se inició con la invención de los números para contar. Muchos utilizaron sus propios dedos de las manos y los pies como instrumentos de cálculo, contando así hasta veinte. La necesidad de contar, condujo a la humanidad a la primera noción de los números. Los números naturales han estado presentes en todas las civilizaciones y se han representado de distintas maneras. Los matemáticos de la india fueron los primeros en introducir símbolos individuales para cada uno de los números del 1 al 9.

Posteriormente surge la necesidad de hacer fraccionamientos de objetos conocidos Luego de eso, se dieron cuenta que no siempre habían solo números "naturales", también se podía tomar media manzana, un cuarto de una pera, cabra y media y de ahí surgieron los racionales.

Gracias a la invención de los números naturales y racionales el hombre de hoy en día ha desarrollado innumerables y complejos procedimientos matemáticos que le han permitido desarrollar su tecnología para mejorar su calidad de vida.

DESARROLLO

¿Que son los Números Naturales?

Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto.

Los números naturales son infinitos. El conjunto de todos ellos se designa por N:

N = {0, 1, 2, 3, 4,…, 10, 11, 12,…}

El cero, a veces, se excluye del conjunto de los números naturales.

Además de cardinales (para contar), los números naturales son ordinales, pues sirven para ordenar los elementos de un conjunto:

1º (primero), 2º (segundo),…, 16º (decimosexto),…

Los números naturales son los primeros que surgen en las distintas civilizaciones, ya que las tareas de contar y de ordenar son las más elementales que se pueden realizar en el tratamiento de las cantidades.

Entre los números naturales están definidas las operaciones adición y multiplicación. Además, el resultado de sumar o de multiplicar dos números naturales es también un número natural, por lo que se dice que son operaciones internas.

La sustracción, sin embargo, no es una operación interna en N, pues la diferencia de dos números naturales puede no ser un número natural (no lo es cuando el sustraendo es mayor que el minuendo). Por eso se crea el conjunto Z de los números enteros, en el que se puede restar un número de otro, cualesquiera que sean éstos.

La división tampoco es una operación interna en N, pues el cociente de dos números naturales puede no ser un número natural (no lo es cuando el dividendo no es múltiplo del divisor). Por eso se crea el conjunto Q de los números racionales, en el que se puede dividir cualquier número por otro (salvo por el cero). La división entera es un tipo de división peculiar de los números naturales en la que además de un cociente se obtiene un resto

Propiedades de la adición de Números Naturales

La adición de números naturales cumple las propiedades asociativa, conmutativa y elemento neutro.

1.- Asociativa:

Si a, b, c son números naturales cualesquiera se cumple que:

(a + b) + c = a + (b + c)

Por ejemplo:

(7 + 4) + 5 = 11 + 5 = 16

7 + (4 + 5) = 7 + 9 = 16

Los resultados coinciden, es decir,

(7 + 4) + 5 = 7 + ( 4 + 5)

2.-Conmutativa

Si a, b son números naturales cualesquiera se cumple que:

a + b = b + a

En particular, para los números 7 y 4, se verifica que:

7 + 4 = 4 + 7

Gracias a las propiedades asociativa y conmutativa de la adición se pueden efectuar largas sumas de números naturales sin utilizar paréntesis y sin tener en cuenta el orden.

3.- Elemento neutro

El 0 es el elemento neutro de la suma de enteros porque, cualquiera que sea el número natural a, se cumple que:

a + 0 = a

Propiedades de la Multiplicación de Números Naturales

La multiplicación de números naturales cumple las propiedades asociativa, conmutativa, elemento neutro y distributiva del producto respecto de la suma.

1.-Asociativa

Si a, b, c son números naturales cualesquiera se cumple que:

(a • b) • c = a • (b • c)

Por ejemplo:

(3 • 5) • 2 = 15 • 2 = 30

3 • (5 • 2) = 3 • 10 = 30

Los resultados coinciden, es decir,

(3 • 5) • 2 = 3 • (5 • 2)

2.- Conmutativa

Si a, b son números naturales cualesquiera se cumple que:

a • b = b • a

Por ejemplo:

5 • 8 = 8 • 5 = 40

3.-Elemento neutro

El 1 es el elemento neutro de la multiplicación porque, cualquiera que sea el número natural a, se cumple que:

a • 1 = a

4.- Distributiva del producto respecto de la suma

Si a, b, c son números naturales cualesquiera se cumple que:

a • (b + c) = a • b + a • c

Por ejemplo:

5 • (3 + 8) = 5 • 11 = 55

5 • 3 + 5 • 8 = 15 + 40 = 55

Los resultados coinciden, es decir,

5 • (3 + 8) = 5 • 3 + 5 • 8

Propiedades de la Sustracción de Números Naturales

Igual que la suma la resta es una operación que se deriva de la operación de contar.

Si tenemos 6 ovejas y los lobos se comen 2 ovejas ¿cuantas ovejas tenemos?. Una forma de hacerlo sería volver a contar todas las ovejas, pero alguien que hubiese contado varias veces el mismo caso, recordaría el resultado y no necesitaría volver a contar las ovejas. Sabría que 6 - 2 = 4.

Los términos de la resta se llaman minuendo (las ovejas que tenemos) y sustraendo (las ovejas que se comieron los lobos).

Propiedades de la resta

La resta no tiene la propiedad conmutativa (no es lo mismo a - b que b - a)

Propiedades de la División de Números Naturales

La división es la operación que tenemos que hacer para repartir un numero de cosas entre un número de personas.

Los términos de la división se llaman dividendo (el número de cosas), divisor (el número de personas), cociente (el numero que le corresponde a cada persona) y resto (lo que sobra).

Si el resto es cero la división se llama exacta y en caso contrario inexacta.

Propiedades de la división

La división no tiene la propiedad conmutativa. No es lo mismo a/b que b/a.

Número racional

En matemática,

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com