ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Modelo econometrico de turismo receptivo..


Enviado por   •  10 de Febrero de 2016  •  Documentos de Investigación  •  2.417 Palabras (10 Páginas)  •  279 Visitas

Página 1 de 10

Modelo Econométrico de la Demanda Turística en México

A continuación se presenta un  modelo econométrico de la demanda turística en México procedente de todo el mundo. Como variables explicativas de la demanda turística se han tomado la variable endógena retardada, para recoger el impacto de consumo producido por los turistas que han viajado en años anteriores; Índice del tipo de cambio real para medir la sensibilidad de los turistas ante las variaciones en el tipo de cambio y, por último, se incluye al PIB de EUA ya que es una variable proxy que representa el poder adquisitivo que posee el turista, considerando también que el mayor ingreso de turistas es proveniente de EUA.

LOG(CONSUMO)=ß0+ß1*LOG(ITCR))+ß2*LOG(PIBEU) + ut

Dónde:

 LOG(CONSUMO): Es el logaritmo del índice del consumo turístico de los turistas que visitan México provenientes de todo el mundo en el período anterior.

LOG(ITCR): Es el logaritmo del índice  del tipo de cambio real.

LOG(PIBEU): Es el logaritmo del PIB de EUA.

A continuación se presentan los resultados del modelo sin correcciones:

Dependent Variable: CONSUMO

Method: Least Squares

Date: 11/26/15   Time: 22:33

Sample: 2004Q1 2014Q4

Included observations: 44

Variable

Coefficient

Std. Error

t-Statistic

Prob.  

ITCR

1.327233

0.543644

2.441363

0.0190

PIBEU

-0.580488

0.541005

-1.072982

0.2896

C

97.63699

1.385011

70.49548

0.0000

R-squared

0.537180

    Mean dependent var

96.90909

Adjusted R-squared

0.541250

    S.D. dependent var

7.157069

S.E. of regression

55.025343

    Akaike info criterion

6.536471

Sum squared resid

-4415.886

    Schwarz criterion

6.739220

Log likelihood

-138.8024

    Hannan-Quinn criter.

6.611660

F-statistic

323.417545

    Durbin-Watson stat

0.538233

Prob(F-statistic)

0.001442

Pruebas de multicolinealidad.

  • Correlaciones parciales: La R2 es baja (0.537180) y tan solo se explica el 53% del comportamiento del modelo, esto quiere decir que el ajuste de los datos no es acertado y  existen problemas de multicolinelaidad entre ellos, es decir, no están cerca de cumplir con la condición de ser lineales.
  • Prueba de Theil: Los resultados de las R fueron: R (0.537180); 1Rx2 (0.141267) 2Rx2 (0.236217); 3Rx2 (0.356530).  Theil  es la medida entre las variables explicativas del modelo, y es “-0.34” por lo que hay serios  problemas de multicolinealidad, ya que tiende menos de 0 que a 1 donde encontraríamos colienalidad entre los datos, lo que nos dice que hay dispersión entre en nuestras variables explicativas.

  • Regresiones auxiliares: Los resultados de las regresiones para cada variable, dieron como resultado: X1Rx2 (0.35718); X2Rx2 (0.277268); X3Rx2 (0.195023).

Ya regresionadas las variables, sustituimos en la fórmula para obtener la respectiva “F” de cada una: FX1Rx2 (-2,99368585); FX2Rx2 (-2,99564047); FX3Rx2 (-2,99724691).

El valor crítico a un nivel de significancia del 95% es de 3.74. En los tres casos de F calculada se encuentra muy por debajo del valor crítico, por lo que las variables no son explicativas.

Pruebas de normalidad.

  • Jarque-Bera: “0.866053” y como se distribuye por arriba del valor critico (5.99), no hay normalidad en los datos.
  • Histograma:

[pic 1]

Pruebas de autocorrelación.

  • Método Grafico: Podemos representar el gráfico temporal de los residuos, observando una alternancia en el signo de los mismos. Lo cual nos hace pensar que no hay existencia de autocorrelación positiva.

[pic 2]

  • Durbin-Whatson:

Como puede verse el estadístico Durbin-Watson es 0.538233, un valor inferior a 2 y por lo tanto estamos en presencia de autocorrelación positiva.

  • Residuos

El gráfico de los residuos nos ayuda a verificar si hay autocorrelación a lo largo del tiempo. Si errores positivos son seguidos de errores positivos y errores negativos por errores de igual signo, entonces estamos en presencia de autocorrelación positiva.

[pic 3]

  • Correlograma

La única banda que sale de los rangos es la “1”, es decir, presenta problemas de autocorrelación  

Date: 11/27/15   Time: 03:45

Sample: 2004Q1 2014Q4

Included observations: 44

Autocorrelation

Partial Correlation

AC 

 PAC

 Q-Stat

      . |***** |

      . |***** |

1

0.631

0.631

18.734

      . |**    |

      **| .    |

2

0.243

-0.257

21.583

      .*| .    |

      **| .    |

3

-0.098

-0.229

22.059

      **| .    |

      . | .    |

4

-0.255

-0.037

25.348

      **| .    |

      . | .    |

5

-0.278

-0.053

29.364

      .*| .    |

      . |*.    |

6

-0.098

0.176

29.877

      . |*.    |

      . |*.    |

7

0.103

0.081

30.462

      . |*.    |

      .*| .    |

8

0.125

-0.182

31.346

      . |*.    |

      . | .    |

9

0.098

0.046

31.900

      . | .    |

      . | .    |

10

0.035

0.024

31.972

      . | .    |

      . | .    |

11

-0.036

-0.021

32.053

      .*| .    |

      **| .    |

12

-0.199

-0.228

34.563

      **| .    |

      .*| .    |

13

-0.276

-0.118

39.554

     ***| .    |

      **| .    |

14

-0.382

-0.276

49.408

     ***| .    |

      . | .    |

15

-0.345

0.004

57.719

      **| .    |

      . | .    |

16

-0.233

-0.040

61.629

      . | .    |

      . | .    |

17

-0.013

0.027

61.641

      . |*.    |

      . | .    |

18

0.165

0.035

63.757

      . |**    |

      . | .    |

19

0.243

0.030

68.540

      . |*.    |

      .*| .    |

20

0.149

-0.111

70.421

Pruebas de multicolinealidad:

...

Descargar como (para miembros actualizados) txt (16 Kb) pdf (303 Kb) docx (109 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com