ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Modelos De Optimizacion


Enviado por   •  29 de Mayo de 2015  •  208 Palabras (1 Páginas)  •  137 Visitas

Resuelva este problema usando programación dinámica de manera que maximice el promedio que obtenga de los cuatro cursos e indique su respuesta.

Procedimiento para la solución:

Primero dividiremos el problema en 4 etapas, cada etapa representa un curso y para cada uno se decide cuantos días estudiar, al inicio de la etapa 1, tenemos 7 días que serán asignados a todas las etapas, como se requiere las notas mínimas especificadas se debe tomar la decisión de estudiar por lo menos un día cada curso y como máximo 4 días, para lo cual la cantidad de tiempo disponible al inicio de cada etapa n es:

4-n+1≤Sn≤7-n+1

Función:

fn (Sn) = Max {Rn(Dn,Sn+1) + f*n+1(Sn-Dn)}

1≤Dn ≤4

4 – n + 1≤Sn≤ 7 – n + 1.

Etapa cuatro

f4 (S4) =Max {R4 (D4, S5) + 0}

1≤ D4 ≤4

1≤S4≤ 4.

S4 Decisión Día 4 F4(S4) D4(S4)

1 2 3 4

1 12 12 1

2 12 14 14 2

3 12 14 18 18 3

4 12 14 18 19 19 4

Etapa tres

f3 (S3) =Max [R3 (D3, S4) + f*4(S3-D3)]

1≤ D3 ≤4

2≤ S3 ≤ 5

S3 Decisión Día 3 F3(S3) D3(S3)

1 2 3 4

2 08+12=20 20 1

3 08+14=22 11+12=23 23 2

4 08+18=26 11+14=25 14+12=26 26 1.3

5 08+19=27 11+18=29 14+14=18 16+12=28 29 2

Etapa dos

f2 (S2) =Max [R2(D2,S3) + f*3 (S2-D2) ]

1≤ D2 ≤4

3≤ S2 ≤ 6

S2 Decisión Día 2 F2(S2) D2(S2)

1 2 3 4

3 07+20=27 27 1

4 07+23=30 08+20=28 30 1

5 07+26=33 08+23=31 12+20=32 33 1

6 07+29=36 08+26=30 12+23=25 18+20=3 38 4

Etapa uno

2 (S2) =Max {R2(D2,S3) + f*3 (S2-D2)

1≤ D2 ≤4

3≤ S2 ≤ 6

S1 Decisión Día 1 F1(S1) D1(S1)

1 2 3 4

7 09+38=47 10+33=23 12+30=42 14+30=44 47 1

Asignar al curso IOII 1 día 09

Asignar al curso SO 4 días 18

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com