ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Reglas De Inferencia


Enviado por   •  21 de Octubre de 2013  •  1.282 Palabras (6 Páginas)  •  529 Visitas

Página 1 de 6

Reglas de inferencia

La regla de remplazo

Hay muchos argumentos validos de función de verdad cuya valides no se puede probar usando solamente las 9 reglas de inferencia dadas hasta aquí. Por ejemplo una prueba formal de valides del argumento obviamente valido

Requiere reglas de inferencia adicionales.

Ahora bien, los únicos enunciados compuestos función de verdad. Luego, si se reemplaza una parte cualquiera de un enunciado compuesto por una expresión que es lógicamente equivalente ala parte remplazada el valor de verdad del enunciado que resulta es el mismo que el de el enunciado original . A esto se le llama, algunas veces la regla de remplazo, y otras, la del principio de extensión nubilidad. Adoptamos la regla de remplazo con un principio adicional de inferencia. Nos permite inferir de cualquier enunciado el resultado de remplazar todo por parte de ese enunciado por otro enunciado lógicamente equivalente ala parte remplazada. Así, usando el principio de la doble negación, que afirma la equivalencia lógica, , podemos inferir, de Cualquiera de los enunciados,

por la regla de remplazo.

para hacer mas definida esta regla damos ahora esta lista de equivalencias lógicas con las que puede usarse. Estas equivalencias constituyen nuevas reglas de inferencias que es posible usar para probar la valides de argumentos. Las numeramos consecutivamente después de las 9 reglas ya enunciadas.

Regla de remplazo:

Cualquiera de las siguientes expresiones lógicamente equivalentes puede remplazar ala otra en donde ocurran:

Ahora puede escribirse una prueba formal de valides para el argumento dado al principio de l párrafo 3.2:

Algunas formas de argumento, aunque muy elemental y perfectamente validas no se incluyen en nuestra lista de 19 reglas de inferencia. Aunque el argumento

es obviamente valido y su forma

no esta incluida en nuestra lista. Por tanto, B no se sigue de A*B por ningún elemento valido elemental según se define nuestra lista. puede. ,sin embargo ,deducirse usando los argumento validos elementales como mostramos antes. podríamos agregar la forma de argumento intuitivamente valida.

a nuestra lis, claro esta, pero si agrandamos nuestra lista de esta manera llegaremos a tener nuestra lista demasiado larga y, por tanto no manejable.

La lista de reglas de inferencia contiene numerosas redundancias. Por ejem., modus tolles podría salir de la lista sin realmente debilitar la maquinaria, pues todo paso deducido usándola puede serlo usando otras reglas de la lista.

La prueba de que una sucesión dada de enunciados es una demostración formal, es efectiva es decir, por observación directa se podrá deducir si cada renglón siguiente alas premisas se sigue o no de los renglones que le preceden mediante alguna de las reglas de inferencia dada. No es necesario pensar ni pensar sobre el significado de los enunciados, ni usar verificación lógica para verificar la valides de cada renglón. Aun en donde falte la justificación de un enunciado, para decidir si la deducción es legitima. cada renglón viene precedido por solamente un numero finito de renglones y solo se han adoptado un numero finito de reglas de inferencia. Aunque toma tiempo puede verificarse por inspección si el renglón en cuestión se sigue de algún renglón o par de renglones procedentes mediante alguna regla de inferencia de nuestra lista.

Así también, la legitimidad de cualquier renglón puede decidirse por un numero finito de observaciones ninguna de las cuales entraña mas de comparación de formas y esquemas para preservar esta efectividad establecemos la regla que solo a de aplicarse una regla de inferencia ala vez. La notación explicativa a un lado de cada enunciado no es, estrictamente ablando parte de la demostración, pero es útil y siempre debiere incluírsele.

Aunque la prueba de que una secuencia dada de enunciados es o no es una demostración formal tal no es un procedimiento efectivo . A este respecto el método presente defiere del método del capitulo anterior. El uso de tablas de verdad es completamente mecánico: dado cualquier argumento de la clase general de la que ahora nos ocupamos, su validez siempre puede ser probada siguiendo las reglas simples presentadas en el cap.2. pero al construir una prueba formal de validez basándose en las diecinueve reglas de inferencia de la lista, es necesario pensar o “imaginar” donde empieza y como proceder.

Aunque no existen métodos de procedimientos efectivos o puramente mecánico, es esencialmente mucho mas fácil construir una prueba formal de validez que escribir una tabla de verdad con docenas o cientos o aun miles de renglones.

Hay una deferencia importante entre las primeras nueve y las ultimas diez reglas de inferencia. Las primeras

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com