Sistemas De Puesta A Tierra(modos De Compatibilidad) Teoría,Diseño, Medición Y Mantenimiento
Enviado por sgrjrr • 17 de Septiembre de 2012 • 5.887 Palabras (24 Páginas) • 773 Visitas
SISTEMAS DE PUESTA A TIERRA
- TEORÍA, DISEÑO, MEDICIÓN y MANTENIMIENTO -
5. Puesta a Tierra de Protección Atmosférica
________________________________________
Índice
________________________________________
5.1 DESCARGAS ATMOSFÉRICAS [5.4] y [5.12].
La descarga atmosférica conocida como rayo, es la igualación violenta de cargas de un campo eléctrico que se ha creado entre una nube y la tierra o, entre nubes.
Los rayos que nos interesan por su efecto, son los de nube a tierra, y en éstos se pueden encontrar 4 tipos: 2 iniciados en las nubes, y 2 iniciados en tierra, ya que pueden ser positivos o negativos. Los más comunes, siendo el 90 % de los rayos detectados, son de una nube negativa hacia tierra.
Los rayos que inician en tierra son relativamente raros y ocurren normalmente en montañas o en estructuras altas, por lo que no los tomaremos en cuenta en lo subsiguiente. En la referencia http://sky-fire.tv/index.cgi/spritegallery.html pueden verse fotografías de ellos y de los fenómenos electroatmosféricos llamados "sprites" y "elves"
Los rayos iniciados en las nubes negativas, normalmente aparecen en nubes de tormenta del tipo cumulonimbus convectivas que usualmente miden de 3 a más de 50 km de largo, y son consecuencia de un rompimiento dieléctrico atmosférico.
Este rompimiento una vez iniciado, avanza en zigzag a razón de unos 50 metros por microsegundo con descansos de 50 microsegundos.
Una vez que el rompimiento creó una columna de plasma en el aire, la descarga eléctrica surgirá inmediatamente dentro de un hemisferio de unos 50 m de radio del punto de potencial más alto. Y, cualquier objeto puede ser el foco de esta descarga hacia arriba de partículas positivas, aún desde una parte metálica debajo de una torre.
La figura muestra el rayo producido por una nube cargada negativamente contra tierra según el modelo de Hasbrouk [5.2].
Los rayos consisten usualmente de descargas múltiples, con intervalos entre descargas de decenas a centenas de milisegundos. La primera descarga es la que tiene mayor amplitud, mientras que las subsecuentes tienen tiempos de ataque más rápidos, aunque la velocidad de las descargas se ha encontrado que depende del lugar geográfico. La primera descarga está entre 6 y 15 x 10E7 m/s y la segunda entre 11 y 13 x 10E7 m/s.
Las descargas atmosféricas pueden causar grandes diferencias de potencial en sistemas eléctricos distribuidos fuera de edificios o de estructuras protegidas. A consecuencia de ello, pueden circular grandes corrientes en las canalizaciones metálicas, y entre conductores que conectan dos zonas aisladas. Pero, aún sin la descarga, una nube cargada electrostáticamente crea diferencias de potencial en la tierra directamente debajo de ella.
El campo eléctrico debajo de una nube de tormenta es generalmente considerado entre 10 y 30 kV/m. Es importante, comparar estos valores con el de 1.5 kV/m con el que las puntas empiezan a emitir iones.
Una nube de tormenta promedio podría contener unos 140 MWh de energía con voltajes hasta de 100 MV, con una carga en movimiento intranube de unos 40 Coulombs. Esta energía es la que se disipa mediante los rayos, con corrientes pico que van de unos cuantos kiloamperes a unos 200 kA con un percentil (50) de 20 kA, de acuerdo con los datos del Sr. R. B. Bent [5.7]. El Electric Power Research Institute (EPRI) en su Transmission Line Reference Book, 345 kV and above. 2da. Edición, Págs. 545-552, maneja una magnitud promedio de una descarga negativa de 31 kA, con una pendiente promedio máxima de 24.3 kV/us. Y para las descargas que siguen a la primera, una magnitud menor aunque más rápidas, con un promedio de 39.9 kV/us, y hasta 70 kV/us ha sido registrado.
Los rayos de una nube positiva hacia tierra contienen más carga que sus contrapartes negativos, por lo que son muy estudiados. En general no exhiben el mismo comportamiento de pasos de los negativos, y suceden más frecuentemente en tormentas invernales con nieve y en latitudes altas.
Algunas particularidades aumentan la probabilidad de la caída de rayos en un lugar. Por ejemplo, la frecuencia de descargas en un lugar es proporcional al cuadrado de la altura sobre el terreno circundante. Esto hace que las estructuras aisladas sean particularmente vulnerables. Además, las puntas agudas incrementan también la probabilidad de una descarga.
5.2 SISTEMAS DE PARARRAYOS [5.4].
La protección de estructuras es más tolerante que una protección electrónica. Así, un edificio puede tolerar hasta 100,000 V mientras que componentes electrónicos a 24 V se dañarán con voltajes sostenidos de 48 volts!
Los rayos ocurren con diferentes intensidades y un sistema que proteja contra su efecto deberá ser diseñado tomando en cuenta los rayos promedio o mayores del área en cuestión. Las descargas no pueden ser detenidas, pero la energía puede ser desviada en una forma controlada. El intentar proteger contra descargas directas puede ser excesivamente caro.
Un sistema de protección contra descargas, llamado de pararrayos, debe:
• Capturar el rayo en el punto diseñado para tal propósito llamado terminal aérea.
• Conducir la energía de la descarga a tierra, mediante un sistema de cables conductores que transfiere la energía de la descarga mediante trayectorias de baja impedancia, y;
• Disipar la energía en un sistema de terminales (electrodos) en tierra.
Cuando la energía de un rayo viaja a través de una trayectoria de gran impedancia, el daño causado puede ser grave por el calor y las fuerzas mecánicas que se crean [5.1].
Como la tierra no tiene una resistividad uniforme en todos los puntos, dentro de un mismo predio puede existir un potencial entre dos placas de metal enterradas. Por eso, en un sistema de electrodos múltiples conectados entre sí, a manera de malla, existe la probabilidad de que exista una diferencia de potencial entre algunos de sus puntos aterrizados.
El problema de diferencia de potenciales entre electrodos se complica aún más cuando una nube cargada pasa por encima de la malla. Además, una descarga eléctrica que caiga cerca, causará grandes corrientes en la tierra para restablecer el equilibrio de cargas. Al fluir esta corriente por tierra, causará una diferencia de potencial entre los diferentes electrodos y esta diferencia de potencial, a su vez, causará que fluya corriente por los conductores de la malla.
Es conocido que un campo magnético se crea cada vez que existe un rayo, no importando si es a tierra o entre nubes. Este campo induce una corriente en cualquier conductor en la vecindad del rayo. Si existen electrodos al final de ese
...