TEOREMA DE PITÁGORAS
Enviado por felixmaritza • 18 de Mayo de 2012 • 777 Palabras (4 Páginas) • 2.446 Visitas
TEOREMA DE PITÁGORAS
El Teorema de Pitágoras establece que en un triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).
Si un triángulo rectángulo tiene catetos de longitudes y , y la medida de la hipotenusa es , se establece que:
(1)
De la ecuación (1) se deducen fácilmente 3 corolarios de aplicación práctica:
Pitágoras ( c²=a²+b² ) – Fórmulas prácticas
Por ejemplo, un triángulo con los lados a = 3, b = 4, c = 5 (pulgadas, pies, metros,... lo que sea) es rectángulo porque
a2 + b2 = 32 + 42
= 9 + 16 = 25 = c2 donde c=5
ÁREAS Y PERÍMETROS DE TRIANGULO, RECTÁNGULO Y CUADRADO.
1.- Triangulo
Perímetro de un triángulo
El perímetro de un triángulo es igual a la suma de sus tres lados.
Ejemplo:
En la figura, los lados del triángulo miden 4 m.
Para obtener el perímetro sumamos sus lados:
Perímetro = 4 m + 4 m + 4 m = 12 m
El perímetro del triángulo es 12 m
Área de un Triangulo
El área de un triángulo es igual a base por altura partido por 2.
Ejemplo
Hallar el área del siguiente triángulo:
2.- Rectángulo
Perímetro
El rectángulo tiene los lados iguales dos a dos, por tanto:
P = 2• a + 2• b
Ejemplos:
Los lados del rectángulo de la figura miden 10 cm. y 5 cm.
El perímetro del rectángulo lo obtenemos sumando todos sus lados:
Perímetro = 10 cm + 5 cm + 10 cm + 5 cm = 30 cm
Por lo tanto, el perímetro del rectángulo es 30 cm.
Área
El área de un rectángulo es el producto de la longitud de los lados.
A= a • b
Ejemplo:
Los lados del rectángulo de la figura miden 10 cm. y 5 cm.
Área = 10 • 5 = 50 cm2
el área del rectángulo es 50 cm2
3.- Cuadrado
Perímetro
El perímetro de un cuadrado es cuatro veces el valor del lado
P = 4 • a
Área
El área de un cuadrado es igual al cuadrado de la longitud del lado.
A= a2
Ejemplos
Calcular el área y el perímetro de un cuadrado de 5 cm de lado.
A = 52 = 25 cm2
P= 4.5= 20 cm
RAZONES TRIGONOMÉTRICAS
La trigonometría es una rama de la matemática, cuyo significado etimológico es "la medición de los triángulos". Deriva de los términos griegos τριγωνο trigōno triángulo y μετρον metron medida. En términos generales, la trigonometría es el estudio de las razones
...