ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema Central Del Límite


Enviado por   •  11 de Diciembre de 2014  •  285 Palabras (2 Páginas)  •  254 Visitas

Página 1 de 2

Definición[editar]

Sea \mathcal{N}(\mu,\sigma^2) la función de densidad de la distribución normal definida como1

f_{\mu,\sigma^2}(x)=\tfrac{1}{\sqrt{2\pi\sigma^2}}\; e^{ -\frac{(x-\mu)^2}{2\sigma^2} },

con una media µ y una varianza σ2. El caso en el que su función de densidad sea \mathcal{N}(0,1), a la distribución se le conoce como normal estándar.

Se define Sn como la suma de n variables aleatorias, independientes, idénticamente distribuidas, y con una media µ y varianza σ2 finitas (σ2≠0):

S_n = X_1 + \cdots + X_n \,

de manera que, la media de Sn es n·µ y la varianza n·σ2, dado que son variables aleatorias independientes. Con tal de hacer más fácil la comprensión del teorema y su posterior uso, se hace una estandarización de Sn como

Z_n\ =\ \frac{S_n - n \mu}{\sigma \sqrt{n}}

para que la media de la nueva variable sea igual a 0 y la desviación estándar sea igual a 1. Así, las variables Zn convergerán en distribución a la distribución normal estándar N(0,1), cuando n tienda a infinito. Como consecuencia, si Φ(z) es la función de distribución de N(0,1), para cada número real z:

\lim_{n\to\infty} \operatorname{Pr}(Z_n \le z) = \Phi(z)\,

donde Pr( ) indica probabilidad y lim se refiere a límite matemático.

Enunciado formal[editar]

De manera formal, normalizada y compacta el enunciado del teorema es:3

Teorema del límite central: Sea {X_1}, {X_2}, ..., {X_n} un conjunto de variables aleatorias, independientes e idénticamente distribuidas con media μ y varianza 0 < \sigma^2 < \infty. Sea

S_n = X_1 + \cdots + X_n \,

Entonces

\lim_{n\to\infty} \Pr\left ( \frac{S_n - n \mu}{\sigma \sqrt{n}} \le z \right ) = \Phi(z)\, .

Es muy común encontrarlo con la variable estandarizada Zn en función de la media muestral \overline{X}_n,

\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}},

puesto que son equivalentes, así como encontrarlo en versiones no normalizadas como puede ser:4 5

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com