Teoria De Deciciones
Enviado por yazmin.dominguez • 25 de Mayo de 2012 • 1.244 Palabras (5 Páginas) • 356 Visitas
Decision theory
From Wikipedia, the free encyclopedia
Jump to: navigation, search
Decision theory in economics, psychology, philosophy, mathematics, and statistics is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. It is closely related to the field of game theory as to interactions of agents with at least partially conflicting interests whose decisions affect each other.
Contents
[hide]
* 1 Normative and descriptive decision theory
* 2 What kinds of decisions need a theory?
o 2.1 Choice under uncertainty
o 2.2 Intertemporal choice
o 2.3 Competing decision makers
o 2.4 Complex decisions
* 3 Alternatives to decision theory
o 3.1 Probability theory
o 3.2 Alternatives to probability theory
o 3.3 General criticism
* 4 See also
* 5 References
* 6 Further reading
[edit] Normative and descriptive decision theory
Most of decision theory is normative or prescriptive, i.e., it is concerned with identifying the best decision to take (in practice, there are situations in which "best" is not necessarily the maximal (optimum may also include values in addition to maximum), but within a specific or approximative range), assuming an ideal decision maker who is fully informed, able to compute with perfect accuracy, and fully rational. The practical application of this prescriptive approach (how people ought to make decisions) is called decision analysis, and aimed at finding tools, methodologies and software to help people make better decisions. The most systematic and comprehensive software tools developed in this way are called decision support systems.
Since people usually do not behave in ways consistent with axiomatic rules, often their own, leading to violations of optimality, there is a related area of study, called a positive or descriptive discipline, attempting to describe what people will actually do. Since the normative, optimal decision often creates hypotheses for testing against actual behaviour, the two fields are closely linked. Furthermore it is possible to relax the assumptions of perfect information, rationality and so forth in various ways, and produce a series of different prescriptions or predictions about behaviour, allowing for further tests of the kind of decision-making that occurs in practice.
In recent decades, there has been increasing interest in what is sometimes called 'behavioral decision theory' and this has contributed to a re-evaluation of what rational decision-making requires (see for instance Anand, 1993).
[edit] What kinds of decisions need a theory?
[edit] Choice under uncertainty
This area represents the heart of decision theory. The procedure now referred to as expected value was known from the 17th century. Blaise Pascal invoked it in his famous wager (see below), which is contained in his Pensées, published in 1670. The idea of expected value is that, when faced with a number of actions, each of which could give rise to more than one possible outcome with different probabilities, the rational procedure is to identify all possible outcomes, determine their values (positive or negative) and the probabilities that will result from each course of action, and multiply the two to give an expected value. The action to be chosen should be the one that gives rise to the highest total expected value. In 1738, Daniel Bernoulli published an influential paper entitled Exposition of a New Theory on the Measurement of Risk, in which he uses the St. Petersburg paradox to show that expected value theory must be normatively wrong. He also gives an example in which a Dutch merchant is trying to decide whether to insure a cargo being sent from Amsterdam to St Petersburg in
...