ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Termodinamica.


Enviado por   •  29 de Agosto de 2014  •  3.586 Palabras (15 Páginas)  •  200 Visitas

Página 1 de 15

Termodinámica

Máquina térmica típica donde puede observarse la entrada desde una fuente de calor (caldera) a la izquierda y la salida a un disipador de calor (condensador) a la derecha. El trabajo se extrae en este caso mediante una serie de pistones.

La termodinámica (del griego θερμo, termo, que significa «calor»1 y δύναμις, dínamis, que significa «fuerza»)2 es la rama de la física que describe los estados de equilibrio a nivel macroscópico.3 Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.4 Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,5 o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden tratarse por medio de la termodinámica.6

La termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio,7 definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas».5 Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica –todas las leyes y variables termodinámicas–, se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden describirse consistentemente empleando la teoría termodinámica.5 Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc.), el sistema tenderá a evolucionar de un estado de equilibrio a otro;8 comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes.

Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico.9 El punto de partida para la mayor parte de las consideraciones termodinámicas son los que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que sólo puede hacerse de una determinada manera. También se introduce una magnitud llamada entropía,10 que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro.11 Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información.12 En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.

Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de ramas de la ciencia y de la ingeniería, tales como motores, cambios de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros.

Índice [ocultar]

1 Historia de la termodinámica

2 Leyes de la termodinámica

2.1 Principio cero de la termodinámica

2.2 Primera ley de la termodinámica

2.3 Segunda ley de la termodinámica

2.3.1 Enunciado de Clausius

2.3.2 Enunciado de Kelvin—Planck

2.3.3 Otra interpretación

2.4 Tercera ley de la termodinámica

2.5 Sistema

2.6 Medio externo

3 Equilibrio térmico

3.1 Variables termodinámicas

3.2 Estado de un sistema

3.3 Equilibrio térmico

3.4 Foco térmico

3.5 Contacto térmico

4 Procesos termodinámicos

5 Rendimiento termodinámico o eficiencia

5.1 Teorema de Carnot

6 Diagramas termodinámicos

7 Véase también

8 Referencias

8.1 Notas

8.2 Bibliografía

9 Enlaces externos

Historia de la termodinámica[editar]

La historia de la termodinámica como disciplina científica se considera generalmente que comienza con Otto von Guericke quien, en 1650, construyó y diseñó la primera bomba de vacío y demostró las propiedades del vacío usando sus hemisferios de Magdeburgo. Guericke fue impulsado a hacer el vacío con el fin de refutar la suposición de Aristóteles que "la naturaleza aborrece el vacío". Poco después de Guericke, el físico y el químico Robert Boyle estudió y mejoró los diseños de Guericke y en 1656, en coordinación con el científico Robert Hooke, construyó una bomba de aire. Con esta bomba, Boyle y Hooke observaron una correlación entre la presión, temperatura y volumen. Con el tiempo, se formularon la ley de Boyle, indicando que para un gas a temperatura constante, la presión y el volumen son inversamente proporcionales y otras leyes de los gases.

En 1679, un asociado de Boyle, Denis Papin basándose en estos conceptos, construyó un digestor de vapor, que era un recipiente cerrado con una tapa de cierre hermético en el que el vapor confinado alcanzaba una alta presión, aumentando el punto de ebullición y acortando el tiempo de cocción de los alimentos.

En 1697, el ingeniero Thomas Savery, a partir de los diseños de Papin, construyó el primer motor térmico, seguido por Thomas Newcomen en 1712. Aunque estos primeros motores eran toscos y poco eficientes,

...

Descargar como (para miembros actualizados) txt (24 Kb)
Leer 14 páginas más »
Disponible sólo en Clubensayos.com