Torsión
Enviado por Anrolagla • 28 de Mayo de 2014 • Tesis • 851 Palabras (4 Páginas) • 479 Visitas
Torsión.
1.- Introducción.
En ingeniería, torsión es la solicitación que se presenta cuando se aplica un momento sobre el eje longitudinal de un elemento constructivo o prisma mecánico, como pueden ser ejes o, en general, elementos donde una dimensión predomina sobre las otras dos, aunque es posible encontrarla en situaciones diversas.
La torsión se caracteriza geométricamente porque cualquier curva paralela al eje de la pieza deja de estar contenida en el plano formado inicialmente por la dos curvas. En lugar de eso una curva paralela al eje se retuerce alrededor de él.
El estudio general de la torsión es complicado porque bajo ese tipo de solicitación la sección transversal de una pieza en general se caracteriza por dos fenómenos:
1-Aparecen tensiones tangenciales paralelas a la sección transversal.
2-Cuando las tensiones anteriores no están distribuidas adecuadamente, cosa que sucede siempre a menos que la sección tenga simetría circular, aparecen alabeos seccionales que hacen que las secciones transversales deformadas no sean planas.
2.- Diagrama momentos torsores.
Al aplicar las ecuaciones de la estática, en el empotramiento
se producirá un momento torsor igual y de sentido contrario a T.
Si cortamos el eje por 1-1 y nos quedamos con la parte de abajo, para que este trozo de eje este en equilibrio, en la sección 1-1 debe existir un momento torsor igual y de sentido contrario. Por tanto en cualquier sección de este eje existe un momento torsor T.
El diagrama de momentos torsores será:
3.- Ángulo girado por un eje.
Para el estudio de la torsión de un eje cilíndrico vamos a suponer las siguientes hipótesis:
a) Hipótesis de secciones planas.
b) Los diámetros se conservan así como la distancia entre ellos.
c) Las secciones van a girar como si se tratara de cuerpos rígidos.
Planteadas estas hipótesis vamos a considerar un elemento diferencial de eje en el que estudiaremos su deformación y después las tensiones a las que está sometido.
Vamos a aislar el trozo dx de eje.
4.- Cálculo de las tensiones a las que está sometido el elemento abcd.
El lado cd desliza hacia la derecha respecto al lado ab; por tanto existe una t.
Este elemento trabaja a tensión cortante pura. El valor de t será:
r = G . y = G . e . D/2
El circulo de Morh de este
elemento es el circulo de la tensión cortante pura.
Las tensiones principales de este elemento serán:
Las direcciones principales del elemento estarán a 45º.
σ1 = τ y σ2 = -τ
Si en vez de considerar al elemento la superficial abcd, hubiera considerado otro elemento a la distancia r del centro, la t a la que estaría sometido este elemento
...