ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Resumen.


Enviado por   •  16 de Marzo de 2014  •  Ensayo  •  2.803 Palabras (12 Páginas)  •  232 Visitas

Página 1 de 12

En agosto de 1986, en un informe enviado a la Agencia Internacional de Energía Atómica, se explicaban las causas del accidente en la planta de Chernóbil. Este reveló que el equipo que operaba en la central el sábado 26 de abril de 1986 se propuso realizar una prueba con la intención de aumentar la seguridad del reactor. Para ello deberían averiguar durante cuánto tiempo continuaría generando energía eléctrica la turbina de vapor después de la pérdida de suministro de energía eléctrica principal del reactor.9 Las bombas refrigerantes de emergencia, en caso de avería, requerían de un mínimo de potencia para ponerse en marcha (hasta que se arrancaran los generadores diésel) y los técnicos de la planta desconocían si, una vez cortada la afluencia de vapor, la inercia de la turbina podía mantener las bombas funcionando.

Para realizar este experimento, los técnicos no querían detener la reacción en cadena en el reactor para evitar un fenómeno conocido como envenenamiento por xenón. Entre los productos de fisión que se producen dentro del reactor, se encuentra el xenón135, un gas muy absorbente de neutrones. Mientras el reactor está en funcionamiento de modo normal, se producen tantos neutrones que la absorción es mínima, pero cuando la potencia es muy baja o el reactor se detiene, la cantidad de 135Xe aumenta e impide la reacción en cadena por unos días. El reactor se puede reiniciar cuando se desintegra el 135Xenón.

Los operadores insertaron las barras de control para disminuir la potencia del reactor y esta decayó hasta los 30 megavatios. Con un nivel tan bajo, los sistemas automáticos detendrían el reactor y por esta razón los operadores desconectaron el sistema de regulación de la potencia, el sistema refrigerante de emergencia del núcleo y, en general, los mecanismos de apagado automático del reactor. Estas acciones, así como la de sacar de línea el ordenador de la central que impedía las operaciones prohibidas, constituyeron graves y múltiples violaciones del Reglamento de Seguridad Nuclear de la Unión Soviética.

A 30 megavatios de potencia comienza el envenenamiento por xenón y para evitarlo aumentaron la potencia del reactor subiendo las barras de control, pero con el reactor a punto de apagarse, los operadores retiraron manualmente demasiadas barras de control. De las 170 barras de acero al boro que tenía el núcleo, las reglas de seguridad exigían que hubiera siempre un mínimo de 30 barras abajo y en esta ocasión dejaron solamente 8. Con los sistemas de emergencia desconectados, el reactor experimentó una subida de potencia extremadamente rápida que los operadores no detectaron a tiempo. A la 1:23, cuatro horas después de comenzar el experimento, algunos en la sala de control comenzaron a darse cuenta de que algo andaba mal.

Cuando quisieron bajar de nuevo las barras de control usando el botón de SCRAM de emergencia (el botón AZ-5 «Defensa de Emergencia Rápida 5»), estas no respondieron debido a que posiblemente ya estaban deformadas por el calor y las desconectaron para permitirles caer por gravedad. Se oyeron fuertes ruidos y entonces se produjo una explosión causada por la formación de una nube de hidrógeno dentro del núcleo, que hizo volar el techo de 100 toneladas del reactor provocando un incendio en la planta y una gigantesca emisión de productos de fisión a la atmósfera.

Secuencia de hechos que llevaron a la explosión

Secuencia de eventos10

Hora

(UTC+3)

Evento

25 de abril

01:06 Comienza la reducción gradual programada del nivel de potencia del reactor.

03:47 La reducción de potencia se detuvo a los 1600 MW.

14:00 El sistema de refrigeración de emergencia del núcleo (ECCS) fue aislado para evitar la interrupción de la prueba más tarde. Este hecho no contribuyó al accidente, pero en caso de haber estado disponible habría reducido mínimamente su gravedad.

La potencia, no obstante, debería haberse reducido aún más. Sin embargo, el regulador de la red eléctrica de Kiev pidió al operador del reactor mantener el mínimo de producción de energía eléctrica para satisfacer correctamente la demanda. En consecuencia, el nivel de potencia del reactor se mantuvo en 1600 MW y el experimento se retrasó. Sin este retraso, la prueba se habría efectuado el mismo día.

23:10 Reducción de potencia reiniciada.

24:00 Cambio de turno del personal.

26 de abril

00:05 El nivel de potencia se disminuyó a 720 MW, y siguió reduciéndose, pese a estar prohibido.

00:28 Con el nivel de potencia sobre los 500 MW, el operador transfirió el control del sistema manual al sistema de regulación automática. La señal falló o el sistema de regulación no respondió a esta señal, lo que provocó una caída inesperada de potencia a 30 MW.

00:43:27 La señal de disparo del turbogenerador se bloqueó conforme a los procedimientos de la prueba. INSAG-1 declaró: "Este procedimiento habría salvado al reactor." No obstante, es posible que este procedimiento retrasara el inicio del accidente unos 39 segundos.

01:00 La potencia del reactor se elevó a 200 MW y se estabilizó. A pesar de que los operadores de la central pudieran desconocerlo, se violó el margen requerido de reactividad operacional (ORM - Operational Reactivity Margin) de 15 barras (mínimas). La decisión se tomó para realizar las pruebas resumen del turbogenerador con una potencia cercana a los 200 MW.

01:01 La bomba de circulación de reserva se cambió a la izquierda del circuito de refrigeración con el fin de aumentar el flujo de agua hacia el núcleo.

01:07 Una bomba de refrigeración adicional se cambió a la derecha del circuito de refrigeración como parte del procedimiento de prueba. El funcionamiento de las bombas de refrigeración adicionales elimina el calor desde el núcleo más rápidamente, lo que conduce a la disminución de la reactividad y hace aún más necesaria la eliminación de las varillas de absorción para evitar una caída en la potencia. Las bombas extrajeron demasiado calor (flujo) hasta el punto de superar los límites permitidos. El aumento del flujo de calor del núcleo generó problemas con el nivel de vapor en las baterías.

01:19 (aprox.) El nivel de vapor de la batería estuvo no muy lejos del nivel de emergencia. Para compensar esto, un operador incrementó el flujo de agua. Esto incrementó el nivel de vapor, y además disminuyó la reactividad del sistema. Las barras de control se subieron para compensarlo, pero hubo que subir más barras de control para mantener el balance de reactividad. La presión del sistema empezó a caer y, para estabilizar la presión, fue necesario apagar la turbina de vapor de la válvula de derivación.

01:22:30 Cálculos posteriores

...

Descargar como (para miembros actualizados) txt (18 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com