Historia De La Matemática
Enviado por alejandroorue • 18 de Junio de 2013 • 5.501 Palabras (23 Páginas) • 348 Visitas
Historia de la matemática
Matemática o Matemáticas, es el estudio de las relaciones entre cantidades, magnitudes y propiedades, y de las operaciones lógicas utilizadas para deducir cantidades, magnitudes y propiedades desconocidas.
En el pasado la matemática era considerada como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización de ambos (como en el álgebra).
Hacia mediados del siglo XIX la matemática se empezó a considerar como la ciencia de las relaciones, o como la ciencia que produce condiciones necesarias. Esta última noción abarca la lógica matemática o simbólica —ciencia que consiste en utilizar símbolos para generar una teoría exacta de deducción e inferencia lógica basada en definiciones, axiomas, postulados y reglas que transforman elementos primitivos en relaciones y teoremas más complejos.
En realidad, las matemáticas son tan antiguas como la propia humanidad: en los diseños prehistóricos de cerámica, tejidos y en las pinturas rupestres se pueden encontrar evidencias del sentido geométrico y del interés en figuras geométricas. Los sistemas de cálculo primitivos estaban basados, seguramente, en el uso de los dedos de una o dos manos, lo que resulta evidente por la gran abundancia de sistemas numéricos en los que las bases son los números 5 y 10.
Las matemáticas más antiguas
Las primeras referencias a matemáticas avanzadas y organizadas datan del tercer milenio a.C., en Babilonia y Egipto. Estas matemáticas estaban dominadas por la aritmética, con cierto interés en medidas y cálculos geométricos y sin mención de conceptos matemáticos como los axiomas o las demostraciones.
Los primeros libros egipcios, escritos hacia el año 1800 a.C., muestran un sistema de numeración decimal con distintos símbolos para las sucesivas potencias de 10 (1, 10, 100…), similar al sistema utilizado por los romanos. Los números se representaban escribiendo el símbolo del 1 tantas veces como unidades tenía el número dado, el símbolo del 10 tantas veces como decenas había en el número, y así sucesivamente. Para sumar números, se sumaban por separado las unidades, las decenas, las centenas… de cada número. La multiplicación estaba basada en duplicaciones sucesivas y la división era el proceso inverso.
Los egipcios fueron capaces de resolver problemas aritméticos con fracciones, así como problemas algebraicos elementales. En geometría encontraron las reglas correctas para calcular el área de triángulos, rectángulos y trapecios, y el volumen de figuras como ortoedros, cilindros y, por supuesto, pirámides. Para calcular el área de un círculo, los egipcios utilizaban un cuadrado y llegaban a un valor muy cercano al que se obtiene utilizando la constante pi (3,14).
El sistema babilónico de numeración era bastante diferente del egipcio. En el babilónico se utilizaban tablillas con varias muescas o marcas en forma de cuña (cuneiforme); una cuña sencilla representaba al 1 y una marca en forma de flecha representaba al 10(véase Matemática en Babilonia).
China y las matemáticas
Aunque la civilización china es cronológicamente comparable a las civilizaciones egipcia y mesopotámica, los registros existentes son bastante menos fiables.
La primera obra matemática es "probablemente" el Chou Pei (horas solares) ¿1200 a.C.? y junto a ella la más importante es "La matemática de los nueve libros" o de los nueve capítulos. Esta obra, de carácter totalmente heterogéneo, tiene la forma de pergaminos independientes y están dedicados a diferentes temas de carácter eminentemente práctico formulados en 246 problemas concretos, a semejanza de los egipcios y babilónicos y a diferencia de los griegos cuyos tratados eran expositivos, sistemáticos y ordenados de manera lógica.
Los problemas resumen un compendio de cuestiones sobre agricultura, ingeniería, impuestos, cálculo, resolución de ecuaciones y propiedades de triángulos rectángulos.
El sistema de numeración es el decimal jeroglífico. Las reglas de las operaciones son las habituales, aunque destaca como singularidad, que en la división de fracciones se exige la previa reducción de éstas a común denominador.
Dieron por sentada la existencia de números negativos, aunque nunca los aceptaron como solución a una ecuación
La contribución algebraica más importante es, sin duda, el perfeccionamiento alcanzado en la regla de resolución de sistemas de ecuaciones lineales. Para todos los sistemas se establece un método genérico de resolución muy similar al que hoy conocemos como método de Gauss, expresando incluso los coeficientes en forma matricial, transformándolos en ceros de manera escalonada.
Inventaron el "tablero de cálculo", artilugio consistente en una colección de palillos de bambú de dos colores (un color para expresar los números positivos y otro para los negativos) y que podría ser considerado como una especie de ábaco primitivo.
Esta orientación algorítmica de las matemáticas en la China Antigua, se mantiene hasta mediados del siglo XIV debido fundamentalmente a las condiciones socio-económicas de esta sociedad.
Con el desarrollo del "método del elemento celeste" se culminó el desarrollo del álgebra en China en la edad media. Este método, desarrollado por Chou Shi Hié, permitía encontrar raíces no sólo enteras, sino también racionales, e incluso aproximaciones decimales para ecuaciones de la forma Pn(x)=a4x4+a3x3+a2x2+a1x+ao .
El método del elemento celeste es equivalente al que en Occidente denominamos "método de Horner", matemático que vivió medio siglo más tarde.
Otro gran logro de la época medieval fue la suma de progresiones desarrollado por Chon Huo (s. XI) y Yang Hui (s.XIII). Unido a estas sumas de progresiones se establecieron elementos sólidos en la rama de la combinatoria, construyendo el llamado "espejo precioso" de manera similar al que hoy conocemos como triángulo de Tartaglia o Pascal.
No se puede decir que la geometría fuese el punto fuerte de la cultura china, limitándose principalmente a la resolución de problemas sobre distancias y semejanzas de cuerpos.
Aproximadamente a mediados del siglo XIV comenzó en China un largo periodo de estancamiento.
Las matemáticas en Grecia
Los griegos tomaron elementos de las matemáticas de los babilonios y de los egipcios. La innovación más importante fue la invención de las matemáticas abstractas basadas en una estructura lógica de definiciones, axiomas y demostraciones.
Según los cronistas griegos, este avance comenzó en el siglo VI a.C. con Tales de Mileto y Pitágoras de Samos. Este último
...