La Geometria En El Renaciminto
Enviado por DianaLeyva • 22 de Enero de 2014 • 268 Palabras (2 Páginas) • 306 Visitas
Resulta complicado establecer una fecha precisa en la que los geómetras comenzaron a interesarse por cuestiones de geometría intrínseca. La matemática griega planteó los problemas geométricos haciendo referencia a las propiedades métricas de un conjunto de puntos definidos y localizados en el plano y en el espacio. La perspectiva era, por tanto, extrínseca.
Tradicionalmente, se le atribuye a Euler el descubrimiento en 1752 de una propiedad de los poliedros convexos.3 Llamando S, A y F al número de vértices, aristas y caras, Euler demostró la relación de igualdad S-A+F=2, conocida hoy como característica de Euler. El resultado era sorprendente porque no hacía intervenir ni la longitud ni el área.
En 1813 Simon Antoine Jean L'Huillier se dio cuenta de que la fórmula de Euler se modificaba para un poliedro no convexo, con la forma, por ejemplo, de un sólido con agujeros (como el toro: S-A+F=2-2g, siendo g el número de agujeros).4 Éste es el primer cálculo de un invariante topológico que permitó clasificar las superficies del espacio. No obstante, la perspectiva continuaba siendo extrínseca, pues los agujeros se ven desde el exterior. ¿Cómo, por ejemplo, una hormiga que anduviese por una habitación sin techo podría representarse el agujero?
Carl Friedrich Gauss, interesado por la geometría de las superficies, estableció un resultado sin precedentes: el teorema egregium: "la curvatura de Gauss de una superficie del espacio no depende del modo en el que ésta se inserta en el espacio ambiente.5 "
La fórmula de Gauss-Bonnet, presentida por Gauss y demostrada por Pierre-Ossian Bonnet en 1848, expresará la característica de Euler en términos de curvatura, evidenciando la imbricación entre las consideraciones geométricas y topológicas.
...