MEDIDAS DE TENDENCIA CENTRAL
Enviado por 760727 • 21 de Marzo de 2013 • 599 Palabras (3 Páginas) • 584 Visitas
MEDIDAS DE TENDENCIA CENTRAL
Las medidas de tendencia central (media, mediana y moda) sirven como puntos de referencia para interpretar las calificaciones que se obtienen en una prueba.
Ejemplo, digamos que la calificación promedio en la prueba que hizo el alumno fue de 20 puntos. Con este dato podemos decir que la calificación del alumno se ubica notablemente sobre el promedio. Pero si la calificación promedio fue de 65 puntos, entonces la conclusión sería muy diferente, debido a que se ubicaría muy por debajo del promedio de la clase.
En resumen, el propósito de las medidas de tendencia central es:
Mostrar en qué lugar se ubica la persona promedio o típica del grupo.
Sirve como un método para comparar o interpretar cualquier puntaje en relación con el puntaje central o típico.
Sirve como un método para comparar el puntaje obtenido por una misma persona en dos diferentes ocasiones.
Sirve como un método para comparar los resultados medios obtenidos por dos o más grupos.
Las medidas de tendencia central más comunes son:
La media aritmética: comúnmente conocida como media o promedio. Se representa por medio de una letra M o por una X con una línea en la parte superior.
La mediana: la cual es el puntaje que se ubica en el centro de una distribución. Se representa como Md.
La moda: que es el puntaje que se presenta con mayor frecuencia en una distribución. Se representa Mo.
Cómo calcular, la media, la moda y la mediana
Media aritmética o promedio
Es aquella medida que se obtiene al dividir la suma de todos los valores de una variable por la frecuencia total. En palabras más simples, corresponde a la suma de un conjunto de datos dividida por el número total de dichos datos.
Ejemplo 1:
En matemáticas, un alumno tiene las siguientes notas: 4, 7, 7, 2, 5, 3
n = 6 (número total de datos)
La media aritmética de las notas de esa asignatura es 4,8. Este número representa el promedio.
Moda (Mo)
Es la medida que indica cual dato tiene la mayor frecuencia en un conjunto de datos; o sea, cual se repite más.
Ejemplo 1:
Determinar la moda en el siguiente conjunto de datos que corresponden a las edades de niñas de un Jardín Infantil.
5, 7, 3, 3, 7, 8, 3, 5, 9, 5, 3, 4, 3
La edad que más se repite es 3, por lo tanto, la Moda es 3 (Mo = 3)
Mediana (Med)
Para reconocer la mediana, es necesario tener ordenados los valores sea de mayor a menor o lo contrario. Usted divide el total de casos (N) entre dos, y el valor resultante corresponde al número del caso que representa la mediana de la distribución.
Es el valor central de un conjunto de valores ordenados en forma creciente o decreciente. Dicho en otras palabras, la Mediana corresponde
...