Ejercicios de binomios y algebra
Enviado por Gerardo Espinosa • 13 de Agosto de 2018 • Tarea • 497 Palabras (2 Páginas) • 1.429 Visitas
[pic 1]
MATERIA: ALGEBRA
PROFESOR: ALVARO REYES GARCIA
ALUMNO:
ACTIVIDAD 7: EJERCICIOS
25/04/18
Prueba, por medio de las propiedades de un campo, cada una de las reglas siguientes, indicando la razón de cada paso.
- (a + c) + (d + b) = (a + b) + (c + d)
(a+d) + (c+b)
(a+b) + (c+d) = (a+b) + (c+d)
- (-b + a) + (-a + b) = 0
(-b+a) (+b-a) = 0
(a-a) (b-b) = 0
0 + 0 = 0
- Si a ≠ 0, b ≠ 0, entonces (ab) (a -1 + b -1 ) = a + b
+ = a+b[pic 2][pic 3]
+ = a+b[pic 4][pic 5]
[pic 6]
b+a = a+b
a+b = a+b
2. Demuestra que para todos a, b, c, d є ℝ.
a-b = (a-b) + (c-d) [pic 7][pic 8]
c-d = (a-b) + (c-d) [pic 9][pic 10]
(a-b) + (c-d) = (a+c) – (b+d) [pic 11]
= (a+c) > (b+d)
b) a < b si y sólo si –a > -b
b-a = -(-b) -a
b-a = -a+b
b-a = b-a
4. Expresa en la forma a + bi.
a) [pic 12]
(⁵ = 32 [pic 13][pic 14][pic 15]
=32(-i) = (0- 32i)
b) (9 - i) - (2 – 3i)
= 9 – 2 - i + 3i
= 7 + 2i
c) (5 + 2i) - (6 + 5i)
5 – 6 +2i +5i
= -1 - 3i
- (2 + i√3 ) - (5 + 2√3i) + (7 – 3√3i)
= 2 + √3i – 5 – 2√3i + 7 -3√3i
= 4 + √3i – 2√3i - 3√3i
= 4 - 4√3i
- (9 + 4i) (7 - 6i)
-54i 63
28i -24[pic 16]
-26i + 87
= 87 – 26i
h) (2 - 4i) ÷ (3 - 2i)
. [pic 17][pic 18]
[pic 19][pic 20]
=[pic 21][pic 22]
i) (4√5 + 2√3i) ÷ (√5 - 2√3i)
. [pic 23][pic 24]
[pic 25]
...