Foro De Dudas E Inquietudes
Enviado por uno23654 • 7 de Mayo de 2015 • 1.923 Palabras (8 Páginas) • 293 Visitas
Jhon carlos herrera guerra
FORO DE TRABAJO COLABORATIVO 1
PRESENTADO POR:
JHON CARLOS HERRERA GUERRA
CÓDIGO: 1047426840
PRESENTADO AL TUTOR:
RICARDO GÓMEZ
UNIVERSIDAD NACIONAL ABIERTA Y DISTANCIA UNAD
ECEDU LICENCIATURA EN MATEMÁTICAS
12/03/2015
PROBLEMA
En una clase de matemática del colegio X, la profesora hace un examen de 15 preguntas a las alumnas de 6-2 .Transcurrida media hora, tres estudiantes le hacen la misma consulta a la profesora, donde le manifiestan que los temas de las preguntas de 11 a la 15 no se habían tratado en clase. La respuesta de la Docente es que los temas ya lo deben conocer porque en el grado quinto lo vieron, y por tanto deben responder las preguntas 11 la 15 la semana siguiente, la profesora les entrega las evaluaciones calificadas, y las tres niñas se llevan la sorpresa de que los 5 puntos 11 al 15 solo les quedo bien 2 preguntas.
Las niñas le manifestaron su disgusto e instalaron la queja ante rectoría, y la rectora llamo a la docente al salón de clase de grado 6-2 y se explicaron los inconvenientes. La profesora afirmó haber dado los temas en clase, pero al no comprobarlo declaró que lo temas los había presentado en 6-1 y 6-3 y por ese motivo el examen tenía esas preguntas.
1. identificar cual es el problema.
Para mi concepto, el problema radica en que la profesora no corroboro los temas para saber si en realidad este curso estaba preparado necesitaba más información.
2. Quienes son los involucrados en el problema.
Los involucrados son: los alumnos de grado 6-2, la profesora y la rectoría.
3. para usted si los temas ya han sido vistos era necesario verlos de nuevo.
Pues pienso que el grado de profundización de los temas en las matemáticas van directamente relacionados con el grado de madures de los jóvenes, es decir, no es lo mismo enseñar un tema en grado quinto de primaria con la misma profundización con que se enseña en primero de bachillerato. Entonces para mi concepto los temas vistos en un grado inferior se deben profundizar aún más en un grado superior.
4. la docente debe tener un castigo.
es innegable que cometió un error, pero para mí no merece ser castigada. si nos ponemos a analizar el contenido del párrafo podemos argumentar de que solamente una mínima parte del alumnado (las tres alumnas ) perdió las preguntas relacionadas con los temas en cuestión, cosa que me hace pensar de que la profesora está haciendo bien su trabajo al enseñar, además nada es perfecto solamente tiene que admitir el error y no volver a cometerlo.
5. un docente de matemáticas siempre debe tener la razón.
Pues tenemos el caso de la misma profesora, por el simple hecho de haber cometido un error no va a dejar de ser docente de matemáticas, claro que cualquier persona por más docente que sea no siempre debe tener la razón, en algún episodio de su vida puede equivocarse e incluso hasta un alumno con conocimientos lo puede corregir.
Anyi Yuleima Basto Padilla
Foro de trabajo colaborativo 1
Presentado a: Ricardo Gómez
Universidad nacional abierta y distancia UNAD
ECEDU licenciatura en matemáticas
Marzo 2015
Contenido del trabajo colaborativo individual
1. Identificar cual es el problema
2. Quienes son los involucrados en el problema
El docente, los alumnos y el directivo.
Edna rocio sierra
Foro de trabajo colaborativo 1
Presentado por: Edna Rocío sierra
Código: 1083894636
Presentado a: Ricardo Gómez
Universidad nacional abierta y distancia UNAD
CEAD Pitalito
ECEDU licenciatura en matemáticas
Marzo 2015
Contenido del trabajo colaborativo individual
1) identificar cual es el problema.
El problema de esta caso formulado, es que una maestra realiza un examen a sus alumnos del grado 6-2 donde las 5 últimas preguntas de 15, no corresponde a lo visto por ellos en clase si no que lo miraron en el grado de quinto, y los alumnos le hacen el reclamo a su maestra.
2) los involucrados en este problema son.
Los alumnos y la maestra
3) para usted si los temas ya se han visto s necesario volverlos haber
Sí, es necesario volverlos a ver ya que se vieron un año atrás y tal vez se hallan olvidado algunos pasos para realizarlos, por eso la docente como una buena profesional, deberá hacer un repaso nuevamente, para que los estudiantes tengan claro el tema y así ella lograr avanzar a otro.
4) la docente debe tener un castigo
No, creo que cualquiera se puede equivocar, pero lo más justo que se debe hacer, es que la maestra le o fresca disculpas a sus alumnos por el inconveniente presentado con el examen, anular las preguntas 11, 12, 13, 14, 15 del examen y después de explicar el tema realizar uno nuevo.
5) un docente de matemáticas siempre debe tener la razón
Un docente de matemáticas ante todo es un ser humano, que se puede equivocar, pero a pesar de eso debe aceptar sus errores, corregirlos y no volverlos a repetir, de los errores se aprende para cada día ser mejor profesional, y enseñar con amor y respeto a las demás personas aceptando las opiniones o correcciones que nos hacen a nuestra labor
Todo error con trae su consecuencia, en este caso aceptar que se equivocó, sin importar que es una docente de matemáticas ya que en esta labor con los números son exactos. No se puede equivocar porque puede dañar toda una operación. Entonces lo más correcto como docente es repetir el tema, hasta que sus alumnos lo entiendan porque esa es la razón de enseñar para formar profesionales y excelentes como nos están formando a nosotros.
Gilver Ferney Ortiz armero
LICENCIATURA EN MATEMÁTICAS
ACTIVIDAD INICIAL
Presentado por: Any Yuleima Basto Padilla
Código: 1096948409
FELIX LEONARDO ACEVEDO
COD 13279709
GILVER FERNEY ORTIZ ARMERO
23798885
...