GESTION Y CONTROL DE RIESGO DE MERCADO.
Enviado por bere06 • 16 de Marzo de 2016 • Apuntes • 3.060 Palabras (13 Páginas) • 332 Visitas
GESTION Y CONTROL DE RIESGO DE MERCADO.
PERFILES DE PERDIDAS Y GANANCIAS EN POSICIONES LARGA Y CORTAS.
El primer paso para calcular la máxima pérdida posible en la que puede incurrir un inversionista es determinar cuándo y cómo se experimenta está perdida, ya que dependiendo del tipo de instrumento financiero en el que se invierte, será diferente la forma en que se obtiene ganancias o pérdidas.
DIVISAS.- son moneda de curso legal de diferentes países. Se utilizan para comprar acciones y títulos de deuda en mercados financieros extranjeros, para pagar créditos contratados en otras monedas y para comprar mercancía en otro país.
ACCIONES.- son títulos que representan la participación en el capital social de en una empresa.
TITULO DE DEUDAS.- son documentos de corto y largo plazo que representa la participación en un crédito cuyo pago de intereses se pueden realizar por adelantado aplicando una tasa de descuento.
DERIVADOS.- son instrumentos híbridos ya que generan obligaciones derivadas del comportamiento de un activo subyacente que puede ser una acción divisa, alguna mercancía básica o un titulo de deuda.
Posición larga.- esta forma de inversión se basa en la perspectiva del inversionista de que en el mercado en el que participa va a subir de precio por lo que adquiere un instrumento financiero con la expectativa de venderlo en el futuro a un precio más alto.
Posición corta.- contraria a la posición larga este tipo de inversión tiene como expectativa que el precio del título financiero adquirido disminuya a futuro para tener una ganancia.
VALUACION A PRECIOS DE MERCADO DE DIVISAS, ACCIONES Y TITULOS DE DEUDA (MARK TO MARKET)
EJEMPLO DE ACCIONES:
BIMBO
Actualmente 1000 x 50= 50,000
Fecha de compra 1000 x 40= 40,000
Ganancia 10,000
EJEMPLO DE BONOS:
Imagine que es propietario de 13,500 bonos que pagan intereses de manera mensual, el valor nominal es de $100 que ofrece una tasa de interés fija del 9.67% anual, si la tasa de interés en el mercado sube de 9.67 anual automáticamente el titulo disminuye de valor, supongan 98.65
Compra 13,500 x 100.0= 1,350,000
Actualmente 13,500 x 98.65= 1,331,775
Perdida 18,225
CONCEPTO DE VALOR EN RIESGO (VAR)
Es la máxima pérdida posible que podría experimentar un activo financiero o un portafolio de inversión en un periodo de tiempo seleccionado y con cierto nivel de confiabilidad bajo condiciones normales en los mercados financieros.
1500 x 150.0= 225,000
X 15%
33,750
NIVEL DE CONFIANZA
La certeza con que se desea obtener el cálculo de la máxima pérdida posible, si se habla de un nivel de confianza del 95% existe el 5% de probabilidad de experimentar una perdida mayor a la calculada estadísticamente si el nivel de confiabilidad es del 4.9% existe un de 1% probabilidad de de obtener una perdida mayor a la calculada.
Los valores ara la variable norma estandarizada son de -1.65 y -2.33 correspondientes a un nivel de confianza del 15% y 99% respectivamente.
Rizkmetrics siempre se calcula a 95% de probabilidad y a un -1.65 de constante; y para Basilea se va a calcular al 99% de probabilidad y a un -2.33 de constante.
2.- HORIZONTE DE TIEMPO
Los días seleccionados en los cuales se puede presentar la máxima pérdida estimada para el sistema Rizkmetrics se utiliza 1 día para el cálculo de VAR y para el acuerdo de Basilea 10 días
Metodología para el cálculo de valor en riesgo (VAR)
Tres metodologías miden la varianza, covarianza, desviación estándar de una serie históricas de rendimientos, siendo esta ultima pieza indispensable para el cálculo del VAR. La decisión de que modelos se utilizara es del administrador en riesgos y dependerá de los instrumentos que compongan su portafolio de inversión.
Método no para métrico o de simulación histórica. Este mecanismo consiste en recolectar los rendimientos de un activo por un cierto periodo de tiempo, aproximadamente de 200 a 500 días para construir una serie de datos y suponer que el activo se conservara los mismos días que fueron estudiados sus rendimientos.
Modelo de asignación de Montecarlo. Consiste en crear una serie de rendimientos supuestos de un activo financiero mediante números aleatorios. Posteriormente se utiliza el método Paramétrico para calcular la media, varianza y de desviación estándar de la serie simulada en un curva de distribución de probabilidad.
Método paramétrico o delta normal. Consiste en asumir que el comportamiento estadístico de los rendimientos de todos los activos financieros sigue una curva de distribución normal y puede ser estandarizado convirtiendo su media a 0 o su desviación estándar a 1.
Factores de riesgos financieros.
Tasa de interés, inflación y tipo de cambio.
Tasa de interés: es una medida porcentual que debe pagar un acreditado que utiliza recursos administrados por otra entidad.
Inflación: Es la disminución en el valor del dinero por el aumento del costo en factores de salarios, materia prima y recursos monetarios.
Tipo de cambio: Es el precio de una moneda en relación con la de otro país, constituye un factor determinante en economías que dependen del comercio con el exterior.
DURACION, DURACIÓN MODIFICADA Y CONVEXIDAD.
Duración. Se define como el tiempo promedio que transcurre para que un inversionista recupere su inversión inicial.
CETES
D=n/365
Donde:
D= duración
n= días para vencer
EJEMPLO
Se busca calcular la duración para un cete al cual le falta 71 días para vencer.
D=71/365=0.1945 años=19 años.
DURACIÓN PARA UN BONO QUE PAGA INTERESES
D= (1+r)/r- ((1+r)+ [ n (c-r)])/([ c (( 1+r) 〖^n〗-1)]+ r)
D= duración
r= tasa de referencia para bonos del mismo nivel de riesgo
c= tasa cupón del bono
n= periodo de pago.
Se busca determinar la duración para un bono con vencimiento de 3 años que paga cupones trimestralmente con una tasa del 10.20% anual y la tasa de referencia para bono con los mismas características es de 10.60%.
D= (1+0.0265)/0.0265- ((1+0.0265)+ [12 (.0255-.0265)])/([ .0255 (( 1+.0265)12-1)]+ 0.0965)
D= 38.735849-(1.0145/0.035902)
D= 10.478370/4=2.62 años
DURACION PARA BONOS CUPON 0
Para bonos cupón cero el cálculo de la duración es muy sencillo, ya que si la duración
...