ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Medidas De Tendencia Central


Enviado por   •  21 de Octubre de 2014  •  352 Palabras (2 Páginas)  •  229 Visitas

Página 1 de 2

Medidas de Tendencia Central

Definiciones:

Las medidas de tendencia central son valores que se ubican al centro de un conjunto de datos ordenados según su magnitud. Generalmente se utilizan 4 de estos valores también conocidos como estadigrafos, la media aritmética, la mediana, la moda y al rango medio.

La media aritmética es la medida de posición utilizada con más frecuencia. Si se tienen n valores de observaciones, la media aritmética es la suma de todos y caca uno de los valores dividida entre el total de valores: Lo que indica que puede ser afectada por los valores extremos, por lo que puede dar una imagen distorcionada de la información de los datos.

La Mediana, es el valor que ocupa la posición central en un conjunto de datos, que deben estar ordenados, de esta manera la mitad de las observaciones es menor que la mediana y la otra mitad es mayor que la mediana, resulta muy apropiada cuando se poseen observaciones extremas.

La Moda es el valor de un conjunto de datos que aparece con mayor frecuencia. No depende de valores extremos, pero es más variables que la media y la mediana.

Rango Medio es la media de las observaciones menor y mayor. como intervienen solamente estas observaciones, si hay valores extremos, se distorsiona como medida de posición, pero

ofrece un valor adecuado, rápido y sencillo para resumir al conjunto de datos.

________________________________________

Medidas de dispersión

Variabilidad de una distribución, indicando por medio de un número, si las diferentes puntuaciones de una variable están muy alejadas de la media. Cuánto mayor sea ese valor, mayor será la variabilidad, cuanto menor sea, más homogénea será a la media. Así se sabe si todos los casos son parecidos o varían mucho entre ellos.

Para calcular la variabilidad que una distribución tiene respecto de su media, se calcula la media de las desviaciones de las puntuaciones respecto a la media aritmética. Pero la suma de las desviaciones es siempre cero, así que se adoptan dos clases de estrategias para salvar este problema. Una es tomando las desviaciones en valor absoluto (desviación media) y otra es tomando las desviaciones al cuadrado (varianza).

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com