Metodo De Hungaro
Enviado por llasvary • 4 de Diciembre de 2013 • 5.167 Palabras (21 Páginas) • 675 Visitas
Método Hungaro
El Método Hungaro es un problema de transporte balanceado, en el cual todas las ofertas y todas las demandas son iguales a uno. Se puede resolver eficientemente un problema de asignación m x m mediante el método Húngaro:
Paso 1.- Empiece por encontrar el elemento mas pequeño en cada renglón de la matriz de costos. Construya una nueva matriz, al restar de cada costo, el costo mínimo de su renglón. Encuentre, para esta nueva matriz el costo mínimo en cada columna. Construya una nueva matriz ( la matriz de costos reducidos ) al restar de cada costo el costo mínimo de su columna.
Paso 2.- Dibuje el mínimo numero de líneas (horizontales o verticales ) que se necesitan para cubrir todos los ceros en la matriz de costos reducidos. Si se requieren m líneas para cubrir todos los ceros, siga con el paso 3.
Paso 3.- Encuentre el menor elemento no cero (llame su valor k en la matriz de costos reducidos, que no esta cubiertos por las líneas dibujadas en el paso 2. Ahora reste k de cada elemento no cubierto de la matriz de costos reducidos y sume k a cada elemento de la matriz de costos reducidos cubierto por dos líneas. Regrese al paso 2.
Un problema de asignación es un problema de transporte balanceado en el que todas las ofertas y demandas son iguales a 1; así se caracteriza por el conocimiento del costo de asignación de cada punto de oferta a cada punto de demanda. La matriz de costos del problema de asignación se llama: matriz de costos.
Como todas las ofertas y demandas para el problema de asignación son números enteros, todas las variables en la solución óptima deben ser valores enteros.
Notas:
1. Para resolver un problema de asignación en el cual la meta es maximizar la función objetivo, se debe multiplicar la matriz de ganancias por menos uno (-1) y resolver el problema como uno de minimización.
2. Si el número de filas y de columnas en la matriz de costos son diferentes, el problema de asignación está desbalanceado. El método Húngaro puede proporcionar una solución incorrecta si el problema no está balanceado; debido a lo anterior, se debe balancear primero cualquier problema de asignación (añadiendo filas o columnas ficticias) antes de resolverlo mediante el método Húngaro.
3. En un problema grande, puede resultar difícil obtener el mínimo número de filas necesarias para cubrir todos los ceros en la matriz de costos actual. Se puede demostrar que si se necesitan j líneas para cubrir todos los ceros, entonces se pueden asignar solamente j trabajos a un costo cero en la matriz actual; esto explica porqué termina cuando se necesitan m líneas.
El problema del asignación es encontrar un emparejamiento de peso máximo en un grafo bipartido ponderado. Es uno de los problemas fundamentales de optimización combinatoria de la rama de optimización o investigación operativa en matemática.
Una descripción apropiada de lo que trata de lograr el modelo de asignación es:
“La mejor persona para el trabajo”
El problema de asignación tiene que ver con la designación de tareas a empleados, de territorios a vendedores, de contratos a postores o de trabajos a plantas, etc. En otras palabras, a la disposición de algunos recursos(máquinas o personas) para la realización de ciertos productos a 'costo mínimo.
Una definición más formal pudiera ser:
Problema de Asignación: Caso particular del problema de Transporte donde los asignados son recursos destinados a la realización de tareas, los asignados pueden ser personas, máquinas, vehículos, plantas o períodos de tiempo. En estos problemas la oferta en cada origen es de valor 1 y la demanda en cada destino es también de valor 1
Características
El problema de asignación presenta las siguientes características:
• El Problema de Asignación debe estar equilibrado, es decir, que las ofertas y las demandas sean igual a 1. Un elemento importante para el problema de asignación es la matriz de costos, si el número de renglones o columnas no son iguales el problema esta desbalanceado y se puede obtener una solución incorrecta,para obtener una solución correcta la matriz debe ser cuadrada.
• Si el número de agentes y tareas son iguales y el coste total de la asignación para todas las tareas es igual a la suma de los costes de cada agente (o la suma de los costes de cada tarea, que es lo mismo en este caso), entonces el problema es llamado problema de asignación lineal. Normalmente, cuando hablamos de problema de asignación sin ninguna matización adicional, nos referimos al problema de asignación lineal.
Oferta: Cantidad que representa la disponibilidad del artículo en la fuente/fabrica de donde proviene. 4
Demanda: Cantidad de artículos que necesita recibir el destino para cumplir sus necesidades. 4
Diferencias con el Modelo de Transporte y Asignación
Los problemas de asignación son un caso particular de los problemas de transporte y constituyen la clase mas sencilla de los problemas lineales, en el cual los trabajadores representan las fuentes y los puestos representan los destinos.
• En el problema de transporte existen m orígenes y n destinos, y el flujo se realiza desde un origen hacia cada uno de los diferentes destinos. Si en este caso permitimos el flujo en ambos sentidos (de origen a destino y destino a origen) se puede hablar de un problema de m + n orígenes y m + n destinos. A este tipo de problemas se les conoce con el nombre de problemas de transbordo (transhipment problems) o transporte con nodos intermedios.
• En el caso mas general, cada punto origen o destino pude ser un punto de transbordo, es decir, cada origen puede evitar o transportar a otros orígenes o a distintos; y los destinos pueden transportar a su vez a otros destinos o volver a los orígenes. Un punto conserva su identidad, origen o destino, solamente cuando sea respectivamente, un punto que originalmente disponga de un suministro o un punto que tenga una demanda a satisfacer.
• En los problemas de asignación las ofertas en cada origen es de valor uno, como lo es la demanda en cada destino; una gran diferencia con respecto a los problemas de transporte.
Formas de representación de un problema de asignación
1. Red.
2. Modelo de programación lineal.
3. Matriz de costos.
4. Tabla de transporte.
Asignación Inicial
Implica asignar números a las celdas para satisfacer las restricciones de oferta y demanda. Para realizar esto se puede emplear alguno de estos métodos: El método de la esquina noroccidental, el método de menor costo y el método de aproximación de Vogel.
Elementos
...