ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PROYECTO DE GRADO


Enviado por   •  14 de Octubre de 2013  •  1.950 Palabras (8 Páginas)  •  326 Visitas

Página 1 de 8

4. MARCO TEÓRICO

4.1. ¿Qué es la Estadística?

La Estadística es una ciencia formal que estudia la recolección, análisis e interpretación de datos de una muestra representativa, ya sea para ayudar en la toma de decisiones o para explicar condiciones regulares o irregulares de algún fenómeno o estudio aplicado, de ocurrencia en forma aleatoria o condicional. Sin embargo, la estadística es más que eso, es decir, es el vehículo que permite llevar a cabo el proceso relacionado con la investigación científica.

Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad. Se usa para la toma de decisiones en áreas de negocios o instituciones gubernamentales.

4.2. Clasificación de la Estadística

La estadística se divide en dos grandes áreas:

 La estadística descriptiva, se dedica a la descripción, visualización y resumen de datos originados a partir de los fenómenos de estudio. Los datos pueden ser resumidos numérica o gráficamente. Ejemplos básicos de parámetros estadísticos son: la media y la desviación estándar. Algunos ejemplos gráficos son: histograma, pirámide poblacional, gráfico circular, entre otros.

 La estadística inferencial, se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones. Se usa para modelar patrones en los datos y extraer inferencias acerca de la población bajo estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas si/no (prueba de hipótesis), estimaciones de unas características numéricas (estimación), pronósticos de futuras observaciones, descripciones de asociación (correlación) o modelamiento de relaciones entre variables (análisis de regresión).

Ambas ramas (descriptiva e inferencial) comprenden la estadística aplicada. Hay también una disciplina llamada estadística matemática, la que se refiere a las bases teóricas de la materia.

4.3. Medidas de Tendencia Central

Una medida de posición o de tendencia es un número que se toma como orientación para referirnos a un conjunto de datos.

Las medidas de tendencia central son puntos de referencia para describir grupos, con frecuencia es conveniente resumir la información con un solo número. Este número suele situarse hacia el centro de la distribución de los datos.

Las medidas de tendencia central corresponden a valores que generalmente se ubican en la parte central de un conjunto de datos. (Ellas permiten analizar los datos en torno a un valor central).

4.3.1. Clases de Medidas de Tendencia Central

Entre las medidas de tendencia central tenemos:

Media: En matemáticas y estadística una media o promedio es una medida de tendencia central que según la Real Academia Española (2001) «[…] resulta al efectuar una serie determinada de operaciones con un conjunto de números y que, en determinadas condiciones, puede representar por sí solo a todo el conjunto».

Mediana: En el ámbito de la estadística, la mediana, representa el valor de la variable de posición central en un conjunto de datos ordenados. De acuerdo con esta definición el conjunto de datos menores o iguales que la mediana representarán el 50% de los datos, y los que sean mayores que la mediana representarán el otro 50% del total de datos de la muestra. La mediana coincide con el percentil 50, con el segundo cuartil y con el quinto decil. Su cálculo no se ve afectado por valores extremos

Moda: La moda es el valor con una mayor frecuencia en una distribución de datos.

Se interpreta como el valor de variable aleatoria que tiene máximo de probabilidad o, viéndolo de otro modo, la localización del máximo de la función de densidad.

4.4. Medidas de Dispersión

Las medidas de dispersión, también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de un número, si las diferentes puntuaciones de una variable están muy alejadas de la mediana media. Cuanto mayor sea ese valor, mayor será la variabilidad, cuanto menor sea, más homogénea será a la mediana media. Así se sabe si todos los casos son parecidos o varían mucho entre ellos.

Para calcular la variabilidad que una distribución tiene respecto de su media, se calcula la media de las desviaciones de las puntuaciones respecto a la media aritmética. Pero la suma de las desviaciones es siempre cero, así que se adoptan dos clases de estrategias para salvar este problema. Una es tomando las desviaciones en valor absoluto (Desviación media) y otra es tomando las desviaciones al cuadrado (Varianza).

La desviación estándar o desviación típica (denotada con el símbolo σ , dependiendo de la procedencia del conjunto de datos) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.

Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.

La varianza (que suele representarse como ) de una variable aleatoria es una medida de dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.

Está medida en unidades distintas de las de la variable. Por ejemplo, si la variable mide una distancia en metros, la varianza se expresa en metros al cuadrado. La desviación estándar, es la raíz cuadrada de la varianza, es una medida de dispersión alternativa expresada en las mismas unidades de los datos del variable objeto de estudio. La varianza tiene como valor mínimo 0.

4.5. Métodos Estadísticos

4.5.1. Estudios experimentales y observacionales

Un objetivo común para un proyecto de investigación estadística es investigar la causalidad, y en particular extraer una conclusión en el efecto que algunos cambios en los valores de predictores o variables independientes tienen sobre una respuesta o variables dependientes. Hay dos grandes tipos de estudios estadísticos para estudiar causalidad: estudios experimentales y observacionales. En ambos tipos de estudios, el efecto de las diferencias de una variable independiente (o variables) en el comportamiento de una variable dependiente es observado. La diferencia entre los dos tipos es la forma en que el estudio es conducido. Cada uno de ellos

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com