Teorias De Cola
Enviado por • 3 de Mayo de 2015 • 687 Palabras (3 Páginas) • 207 Visitas
INTRODUCCION
Todos hemos experimentado en alguna ocasión la sensación de estar perdiendo el tiempo al esperar en una cola. El fenómeno de las colas nos parece natural: esperamos en el coche al estar en un tapón, o un semáforo mal regulado, o en un peaje; esperamos en el teléfono a que nos atienda un operador y en la cola de un supermercado para pagar.... Generalmente como clientes no queremos esperar, los gestores de los citados servicios no quieren que esperemos.... ¿Por qué hay que esperar? La respuesta es casi siempre simple, en algún momento la capacidad de servicio ha sido (o es) menor que la capacidad demandada.
Esta limitación se puede eliminar invirtiendo en elementos que aumenten la capacidad. En estos casos la pregunta es: ¿Compensa invertir? La teoría de colas intenta responder a estas preguntas utilizando métodos matemáticos analíticos.
Las "colas" son un aspecto de la vida moderna que nos encontramos continuamente en nuestras actividades diarias. En el contador de un supermercado, accediendo al Metro, en los Bancos, etc., el fenómeno de las colas surge cuando unos recursos compartidos necesitan ser accedidos para dar servicio a un elevado número de trabajos o clientes.
TEORÍA DE COLAS
El origen de la Teoría de Colas está en el esfuerzo de Agner Krarup Erlang (Dinamarca, 1878 - 1929) en 1909 para analizar la congestión de tráfico telefónico con el objetivo de cumplir la demanda incierta de servicios en el sistema telefónico de Copenhague. Sus investigaciones acabaron en una nueva teoría llamada teoría de colas o de líneas de espera. Esta teoría es ahora una herramienta de valor en negocios debido a que muchos de sus problemas pueden caracterizarse, como problemas de congestión llegada - partida.
Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares o de sistemas de colas. Los modelos sirven para encontrar un buen compromiso entre costes del sistema y los tiempos promedio de la línea de espera para un sistema dado.
El problema es determinar que capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que un cliente no llega a un horario fijo, es decir, no se sabe con exactitud en que momento llegarán los clientes. También el tiempo de servicio no tiene un horario fijo. Las llegadas se describen por su distribución estadística. Si las llegadas ocurren con una tasa promedio y que son independientes una de otra, entonces ocurren de acuerdo con una distribución de probabilidades de tipo "Poisson”.
El tráfico en redes se puede modelar con la ayuda de la teoría de colas, es por ello que es importante estudiarlas
...