Teoria De Colas
Enviado por marielensallos • 14 de Noviembre de 2011 • 3.604 Palabras (15 Páginas) • 883 Visitas
Etapas de una simulación
En el desarrollo de una simulación se pueden distinguir las siguientes etapas (Banks et al. 1996):
• Formulación del problema: En este paso debe quedar perfectamente establecido el objeto de la simulación. El cliente y el desarrollador deben acordar lo más detalladamente posible los siguientes factores: los resultados que se esperan del simulador, el plan de experimentación, el tiempo disponible, las variables de interés, el tipo de perturbaciones a estudiar, el tratamiento estadístico de los resultados, la complejidad de la interfaz del simulador, etc. Se debe establecer si el simulador será operado por el usuario o si el usuario sólo recibirá los resultados. Finalmente, se debe establecer si el usuario solicita un trabajo de simulación o un trabajo de optimización.
• Definición del sistema: El sistema a simular debe estar perfectamente definido. El cliente y el desarrollador deben acordar dónde estará la frontera del sistema a estudiar y las interacciones con el medioambiente que serán consideradas.
• Formulación del modelo: Esta etapa es un arte y será discutida más adelante. La misma comienza con el desarrollo de un modelo simple que captura los aspectos relevantes del sistema real. Los aspectos relevantes del sistema real dependen de la formulación del problema; para un ingeniero de seguridad los aspectos relevantes de un automóvil son diferentes de los aspectos considerados por un ingeniero mecánico para el mismo sistema. Este modelo simple se irá enriqueciendo como resultado de varias iteraciones.
• Colección de datos: La naturaleza y cantidad de datos necesarios están determinadas por la formulación del problema y del modelo. Los datos pueden ser provistos por registros históricos, experimentos de laboratorios o mediciones realizadas en el sistema real. Los mismos deberán ser procesados adecuadamente para darles el formato exigido por el modelo.
• Implementación del modelo en la computadora: El modelo es implementado utilizando algún lenguaje de computación. Existen lenguajes específicos de simulación que facilitan esta tarea; también, existen programas que ya cuentan con modelos implementados para casos especiales.
• Verificación: En esta etapa se comprueba que no se hayan cometidos errores durante la implementación del modelo. Para ello, se utilizan las herramientas de debugging provistas por el entorno de programación.
• Validación: En esta etapa se comprueba la exactitud del modelo desarrollado. Esto se lleva a cabo comparando las predicciones del modelo con: mediciones realizadas en el sistema real, datos históricos o datos de sistemas similares. Como resultado de esta etapa puede surgir la necesidad de modificar el modelo o recolectar datos adicionales.
• Diseño de experimentos: En esta etapa se decide las características de los experimentos a realizar: el tiempo de arranque, el tiempo de simulación y el número de simulaciones. No se debe incluir aquí la elaboración del conjunto de alternativas a probar para seleccionar la mejor, la elaboración de esta lista y su manejo es tarea de la optimización y no de la simulación. Debe quedar claro cuando se formula el problema si lo que el cliente desea es un estudio de simulación o de optimización.
• Experimentación: En esta etapa se realizan las simulaciones de acuerdo el diseño previo. Los resultados obtenidos son debidamente recolectados y procesados.
• Interpretación: Se analiza la sensibilidad del modelo con respecto a los parámetros que tienen asociados la mayor incertidumbre. Si es necesario, se deberán recolectar datos adicionales para refinar la estimación de los parámetros críticos.
• Implementación: Conviene acompañar al cliente en la etapa de implementación para evitar el mal manejo del simulador o el mal empleo de los resultados del mismo.
• Documentación: Incluye la elaboración de la documentación técnica y manuales de uso. La documentación técnica debe contar con una descripción detallada del modelo y de los datos; también, se debe incluir la evolución histórica de las distintas etapas del desarrollo. Esta documentación será de utilidad para el posterior perfeccionamiento del simulador.
Tipos de simulación
De acuerdo a la naturaleza del modelo empleado, la simulación puede ser por (Fishman,
1978):
• Identidad: Es cuando el modelo es una réplica exacta del sistema en estudio. Es la que utilizan las empresas automotrices cuando realizan ensayos de choques de automóviles utilizando unidades reales.
• Cuasi-identidad: Se utiliza una versión ligeramente simplificada del sistema real. Por ejemplo, los entrenamientos militares que incluyen movilización de equipos y tropas pero no se lleva a cabo una batalla real.
• Laboratorio: Se utilizan modelos bajo las condiciones controladas de un laboratorio.
Se pueden distinguir dos tipos de simulaciones: o Juego operacional: Personas compiten entre ellas, ellas forman parte del modelo, la otra parte consiste en computadoras, maquinaria, etc. Es el caso de una simulación de negocios donde las computadoras se limitan a recolectar la información generada por cada participante y a presentarla en forma ordenada a cada uno de ellos.
o Hombre-Máquina: Se estudia la relación entre las personas y la máquina. Las personas también forman parte del modelo. La computadora no se limita a recolectar información, sino que también la genera. Un ejemplo de este tipo de simulación es el simulador de vuelo.
• Simulación por computadora: El modelo es completamente simbólico y está implementado en un lenguaje computacional. Las personas quedan excluidas del modelo. Un ejemplo es el simulador de un sistema de redes de comunicación donde la conducta de los usuarios está modelada en forma estadística. Este tipo de simulación a su vez puede ser: o Digital: Cuando se utiliza una computadora digital. o Analógica: Cuando se utiliza una computadora analógica. En este grupo también se pueden incluir las simulaciones que utilizan modelos físicos.
Actualmente la simulación presta un invalorable servicio en casi todas las áreas posibles, algunas de ellas son:
• Procesos de manufacturas: Ayuda a detectar cuellos de botellas, a distribuir personal, determinar la política de producción.
• Plantas industriales: Brinda información para establecer las condiciones óptimas de operación, y para la elaboración de procedimientos de operación y de emergencias.
• Sistemas públicos: Predice la demanda de energía durante las diferentes épocas de año, anticipa el comportamiento del clima, predice la forma de propagación de enfermedades.
• Sistemas de transportes: Detecta zonas de posible congestionamiento,
...