ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Conducción Bidimensional En Estado Estaciconario


Enviado por   •  2 de Julio de 2014  •  318 Palabras (2 Páginas)  •  342 Visitas

Página 1 de 2

CONDUCCION BIDIMENSIONAL BAJO CONDICIONES DE ESTADO ESTACIONARIO.

ANALISIS:

A fin de apreciar como se aprovecha el método de separación de variables para resolver problemas de conducción en 2 dimensiones, consideramos el sistema de la figura. Tres lados de la placa rectangular se mantienen a una temperatura constante T1, mientras el cuarto lado se mantiene a una temperatura constante T1" T2. Estamos interesados en la distribución de temperaturas T(x,y), pero para simplificar la solución introducimos la transformación

"(T- T1)/( T1- T2)

Al sustituir la ecuación anterior en la ecuación ( 2T/ x2)+ ( 2T/ y2)=0, la ecuación diferencial transformada es:

( 2 / x2)+ ( 2 / y2)=0

Y

T2, =0

W

T1, =0 T1, =0

0

X

• T1, =0

Como la ecuación es de segundo orden en X y Y, se necesitan 2 condiciones de frontera para cada una de las coordenadas. Estas son

(0,Y) = 0 y (X,0) = 0

(L,Y) = 0 y (X,W) = 0

Advierta que a través de la transformación de la ecuación, tres de las cuatro condiciones de frontera son ahora homogéneas y el valor de esta restringido al intervalo entre 0 y 1

Aplicamos ahora la técnica de separación de variables suponiendo que es posible expresar la solución deseada como el producto de dos funciones, una de las cuales depende solo de X mientras la otra depende solo de Y. Es decir, suponemos la existencia de una solución de forma

(X,Y) = X(x)*Y(y)

Al sustituir en la ecuación anterior y dividir entre XY, obtenemos

-(d2X/Xdx2) = (d2Y/Ydy2)

Y es evidente que la ecuación diferencial es, de hecho, separable. Es decir, el lado izquierdo de la ecuación depende solo de x y el lado derecho solo de y. así la igualdad se aplica en general solo si ambos lados son iguales a la misma constante. Al identificar esta constante de separación -hasta ahora desconocida- como 2, tenemos

d2X/dx2 + 2X = 0

d2Y/dy2 + 2Y = 0

y la ecuación diferencial parcial se reduce a dos ecuaciones diferenciales ordinarias. Advierta que la asignación de 2 como

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com