Control Digital · 2
Enviado por laco26 • 22 de Abril de 2012 • 250 Palabras (1 Páginas) • 1.330 Visitas
TRABAJO COLABORATIVO #2
CONTROL DIGITAL
LEONADRO ALBERTO CONDE TORRES
CC 17 653 787
TUTOR:
OSCAR DONALDO RODRIGUEZ BERMUDEZ
INGENIERO ELECTRONICO
UNIVERSIDA NACIONAL (MANIZALES)
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA
CENTRO DE ESTUDIOS A DISTANCIA (CEAD)
PROGRAMA DE INGENIERIA ELECTRONICA
CONTROL DIGITAL
FLORENCIA- 2009-05-24
SOLUCION DEL EJERCICIO
Dado el sistema representado por la siguiente ecuación de estados, el cual ha sido muestreado con un periodo de 1 S, determine la controlabilidad del mismo.
El sistema descrito por las ecuaciones de estados es de salida controlable sí y sólo sí la matriz P de orden (nxnr) es de rango m donde
P=[B AB A^2B]
Dado que
A=[■(0.4&-1&2@1&-0.6&0.1@-0.2&1&-1)] B=[■(-1@-0.6@0)] C=[■(-0.1&0.5&1)]
Por lo cual al realizar las operaciones
P= [■(-0.2&-0.34&-0.08@0&0&0.544@0&0&-0.28)]
P es el rango r = 3 = m (el número de salidas) por lo tanto la salida del sistema es controlable.
>> A=[0.4 -1 2;1 -0.6 0.1;-0.2 1 -1 ];
>> B=[-1;-0.6;0];
>> C=[-0.1 0.5 1];
>> D=[0];
>> Co=ctrb(A,B);
>> r=rank(Co)
r = 3
Por lo cual es controlable.
En caso de ser controlable, calcular la secuencia de acciones de control que llevan el sistema desde el estado inicial x(0)={1, 1, 1} al final x(f)={0, 0,0}.
Dibujar la evolución de los estados desde el estado inicial al final en el espacio de estados (para esto use Matlab).
>> t=0:0.01:1;
>> A=[0.4 -1 2;1 -0.6 0.1;-0.2 1 -1 ];
>> B=[-1;-0.6;0];
>> C=[-0.1 0.5 1];
>> D=[0];
>> [y,x]=initial(A,B,C,D,[1;1;1],t);
>> x1=[1 0 0]*x';
>> x2=[0 1 0]*x';
>> x3=[0 0 1]*x';
>> plot(t,x1,t,x2,t,x3)
grid
title('Respuesta a condicion inicial')
xlabel('Variable de estado')
ylabel('Variables de estado x1 x2 x3')
gtext('x1')
gtext('x2')
gtext('x3')
...