HIDRATOS DE METANO
Enviado por davpe01 • 17 de Diciembre de 2013 • 11.202 Palabras (45 Páginas) • 269 Visitas
Hidrato de metano
El hidrato de metano es la mezcla de dos componentes, el hidrato de gas y el metano, que son los que más abundan en estado natural.
Formación de hidrato de metano
En el medio marino, se explica su formación de una forma un tanto compleja. El metano que resulta de la descomposición de los organismos vivientes en el agua, reacciona con el agua a punto de congelarse formando hidratos, que después se aposentarán en los fondos marinos.La reacción se produce en condiciones de presión y temperatura particulares. El hidrato de metano es particularmente inestable.
Propiedades
Este "hielo" tiene una extraña cualidad, y es que es inflamable. Si una llama se acerca a este, arderá. Se pretende utilizar este compuesto más adelante como un combustible, usándose de manera similar al petróleo o el gas natural. Mediante su extracción es bastante difícil que no se libere metano, esto ha limitado su explotación ya que si liberamos metano a la atmósfera, podríamos incrementar el efecto invernadero de manera considerable.
HIDRATOS DE METANO COMO FUENTE DE ENERGÍA: PROBLEMÁTICA Y PERSPECTIVAS DE FUTURO
Los hidratos de metano constituyen una potencial fuente de energía, que cobra cada vez mayor importancia dado el progresivo agotamiento de los recursos energéticos del planeta [1]. Los hidratos de carbono consisten en compuestos de inclusión cristalinos (clatratos) de agua y metano, similares al hielo, en donde las moléculas de agua forman una estructura tridimensional (anfitrión) que aloja en su interior la molécula de gas metano (huésped). Una composición tipo estaría formada por 5,75 moléculas de agua que rodean una molécula de metano. Su formación tiene lugar a bajas temperaturas (< 0ºC) y presiones moderadas o altas. Los yacimientos de hidratos de metano se encuentran en las plataformas continentales de los mares y océanos, y el manto de las zonas árticas [3]. Intervalos típicos de formación de hidratos de metano son profundidades entre 280 – 4000 m, temperaturas entre 273 (280 m) y 296 K (4000 m), y presiones entre 4,14 (280 m) y 41,4 MPa (4000 m) [2-4].
El interés de los hidratos de metano como recurso energético es evidente dada la presencia de metano en su composición. Asimismo, es el combustible fósil más limpio con el medio ambiente por su elevada relación H/C y con una aplicabilidad creciente no sólo como fuel sino también como materia prima química. Por otra parte, el volumen potencial disponible de hidratos de metano es enorme. Se estima que existen unas reservas aproximadas de metano en forma de hidratos de 13.000 Tm3 (T (tera) = 1012) mientras que la capacidad existente en los yacimientos de metano convencionales se estima en 180 Tm3 [5]. Asimismo, el volumen total de hidratos de metano indicado representa aproximadamente el doble del resto de combustibles fósiles en todo el mundo. Su distribución geográfica es igualmente interesante puesto que es un recurso menos concentrado que los yacimientos de petróleo y gas natural actuales. Los yacimientos registrados hasta la fecha se encuentran en el Ártico y en las plataformas marinas de la práctica totalidad de los continentes, con lo que un mayor número de países podrían tener acceso directo a este recurso energético [6].
La obtención de metano a partir de sus hidratos plantea una serie de problemas técnicos. Un primer problema está relacionado con la adecuada detección y cuantificación de los yacimientos. El método más utilizado consiste en la realización de perfiles de reflexión sísmico, concretamente en el procedimiento denominado BSR (Bottom simulating reflector, “reflexión simulada del fondo”), que distingue entre diferentes capas del sustrato geológico en función de su mayor o menor impedancia acústica. Una vez detectado el yacimiento, interesa igualmente determinar la naturaleza de los sedimentos minerales a los que se encuentra asociados, normalmente mediante prospección y extracción de muestras in situ. El yacimiento de hidrato de metano puede estar constituido por una gran bolsa separada o en cambio (y esta es la situación más frecuente), presentarse ocupando los espacios entre los diferentes estratos sedimentarios. La importancia del sedimento no debe infravalorarse puesto que resulta más sencilla la extracción del hidrato de metano si el grano del sedimento es grueso en lugar de fino. En este último caso se requiere más tiempo y el esfuerzo económico es sensiblemente superior. Asimismo, la naturaleza química del sedimento (e.g. hierro, aluminio, etc.) influye en el hábito cristalino del hidrato y en su facilidad de nucleación y cristalización, y por ende, en su potencial descomposición. Una línea de investigación actualmente en desarrollo y de gran interés trata de determinar en laboratorio los intervalos de estabilidad (presión, temperatura, composición, difusión) de los hidratos de metano en diferentes medios porosos y de composición química. De esta manera, se pueden determinar las cinéticas de formación/descomposición y el efecto catalítico de las potenciales impurezas. Estos datos poseen un extraordinario valor con vistas a evaluar el potencial de explotación real del yacimiento.
No obstante, el principal problema económico consiste en la extracción del metano de su hidrato para su separación y aprovechamiento posterior. Las dos opciones son la despresurización o el calentamiento directo. La primera alternativa se considera la más factible desde un punto de vista económico y parece ser la que ya se está aplicando en algún yacimiento en Siberia [7]. La segunda vía requiere calentar el yacimiento, lo cual puede hacerse introduciendo un agente de calefacción (e.g. vapor de agua). Sin embargo, las elevadas profundidades a las que es necesario perforar (> 300 m) hacen inviable la aportación de calor directamente desde la superficie al fondo del yacimiento debido a las pérdidas energéticas producidas durante el transporte. Una solución ingeniosa sobre este problema y que podría hacer viable la alternativa del calentamiento directo es la sugerida por la empresa americana Precision Combustion [1,8]. Esta empresa ha desarrollado una caldera que podría introducirse directamente en el yacimiento, generando el calor necesario para fundir el hidrato liberando el metano. La caldera incorpora una tecnología propia de combustión catalítica basada en un catalizador de platino, que permite realizar una combustión controlada a baja temperatura dentro del yacimiento (por la presencia del catalizador). De acuerdo con sus cálculos, la caldera sólo consumiría un 15% del metano liberado para generar calor, siendo el balance económico un 50% más favorable que la posibilidad de introducir calor directamente desde la superficie. Esta empresa también afirma que esta tecnología permitiría eliminar
...