Interés Compuesto
Enviado por ivanalexmilo • 30 de Septiembre de 2014 • 1.852 Palabras (8 Páginas) • 196 Visitas
2. Interés Compuesto
El concepto y la fórmula general del interés compuesto es una potente herramienta en el análisis y evaluación financiera de los movimientos de dinero.
El interés compuesto es fundamental para entender las matemáticas financieras. Con la aplicación del interés compuesto obtenemos intereses sobre intereses, esto es la capitalización del dinero en el tiempo. Calculamos el monto del interés sobre la base inicial más todos los intereses acumulados en períodos anteriores; es decir, los intereses recibidos son reinvertidos y pasan a convertirse en nuevo capital.
Llamamos monto de capital a interés compuesto o monto compuesto a la suma del capital inicial con sus intereses. La diferencia entre el monto compuesto y el capital original es el interés compuesto.
El intervalo al final del cual capitalizamos el interés recibe el nombre de período de capitalización. La frecuencia de capitalización es el número de veces por año en que el interés pasa a convertirse en capital, por acumulación.
Tres conceptos son importantes cuando tratamos con interés compuesto:
El capital original (P o VA)
La tasa de interés por período (i)
El número de períodos de conversión durante el plazo que dura la transacción (n).
Por ejemplo:
Sí invertimos una cantidad durante 5½ años al 8% convertible semestralmente, obtenemos:
El período de conversión es : 6 meses
La frecuencia de conversión será : 2 (un año tiene 2 semestres)
Entonces el número de períodos de conversión es:
(número de años)*(frecuencia de conversión) = 5½ x 2 = 11
Fórmulas del Interés Compuesto:
La fórmula general del interés compuesto es sencilla de obtener:
VA0,
VA1 = VA0 + VA0i = VA0 (1+i),
VA2 = VA0 (1+i) (1+i) = VA0 (1+i)2
VA3 = VA0 (1+i) (1+i) (1+i) = VA0 (1+i)3
Generalizando para n períodos de composición, tenemos la fórmula general del interés compuesto:
Fórmula para el cálculo del monto (capital final) a interés compuesto. Para n años, transforma el valor actual en valor futuro.
El factor (1 + i)n es conocido como Factor de Acumulación o Factor Simple de Capitalización (FSC), al cual nos referiremos como el factor VF/VA (encontrar VF dado VA). Cuando el factor es multiplicado por VA, obtendremos el valor futuro VF de la inversión inicial VA después de n años, a la tasa i de interés.
Tanto la fórmula del interés simple como la del compuesto, proporcionan idéntico resultado para el valor n = 1.
VF = VA(1+ni) = VF = VA(1+i)n
VA(1+1i) = VA(1+i)1
VA(1+i) = VA(1+i)
Si llamamos I al interés total percibido, obtenemos:
I = VF - VA luego I = VF - VA = VA(1+i)n - VA
Simplificando obtenemos la fórmula de capitalización compuesta para calcular los intereses:
Con esta fórmula obtenemos el interés (I) compuesto, cuando conocemos VA, i y n.
Ejercicio 37 (Calculando el interés y el VF compuestos)
Determinar los intereses y el capital final producido por UM 50,000 al 15% de interés durante 1 año.
Solución:
VA = 50,000; i = 0.15; n = 1; I =?; VF =?
Calculamos el interés y el VF:
(19) VF = 50,000*(1+0.15) = UM 57,500
Para el cálculo de I podemos también aplicar la fórmula (7):
[7] I = 57,500 - 50,000 = UM 7,500
Respuesta:
El interés compuesto es UM 7,500 y el monto acumulado
2.1 . Valor actual a interés compuesto
La fórmula general del interés compuesto permite calcular el equivalente de un capital en un momento posterior.
Dijimos en el numeral 1.1, pág. 101, de éste Capítulo, la longitud de la escalera es la misma contada de abajo hacia arriba como de arriba abajo. En el interés compuesto cuanto más arriba miramos, más alto es cada escalón sucesivo y si nos paramos arriba y miramos hacia abajo, esto es, hacia el valor actual, cada sucesivo escalón es algo más bajo que el anterior.
De la ecuación [19] obtenemos la fórmula del valor actual a interés compuesto:
También expresamos como:
Conocemos a la expresión entre corchetes como el Factor Simple de Actualización (FSA) o el factor VA/VF. Permite determinar el VA (capital inicial) de la cantidad futura VF dada, después de n períodos de composición a la tasa de interés i.
La expresión valor futuro significa el valor de un pago futuro en fecha determinada antes del vencimiento. Cuanto menos tiempo falta para el vencimiento, mayor es el valor actual del monto adeudado, y, en la fecha del vencimiento, el valor actual es equivalente al monto por pagar. Para comprobar uno cualquiera de esos valores actuales, basta hallar si a la tasa indicada, en el tiempo expuesto, el valor actual es la cantidad adeudada.
De la ecuación [19] obtenemos también, las fórmulas [22] y [23] para determinar los valores de i (dado VA, VF y n) y n (dado VA, VF e i).
Con la fórmula [22] obtenemos la tasa del período de capitalización. Con la fórmula [23] calculamos la duración de la operación financiera.
En este caso, no da lo mismo adecuar la tasa al tiempo o adecuar el tiempo a la tasa. Tanto el tiempo como la tasa de interés deben adecuarse al período de capitalización. Si el tiempo está en meses, la tasa debe ser mensual; si el tiempo está en bimestres, la tasa debe ser bimestral.
Ejercicio 38 (VA a interés compuesto)
Tenemos una obligación por UM 12,000, a ser liquidado dentro de 10 años. ¿Cuánto invertiremos hoy al 9% anual, con el objeto de poder cumplir con el pago de la deuda?
Solución:
VF = 12,000; i = 0.9; n = 10; VA =?
Respuesta:
El monto a invertir hoy es UM 5,068.93.
2.2 . Valor actual de deuda que devenga interés
Como en el interés simple, en el caso de deudas que devengan interés, antes de calcular su valor actual, debemos averiguar primero el monto nominal, esto es, la cantidad de dinero (capital más interés) de la deuda a su vencimiento. Calculado el monto nominal es más sencillo determinar el valor actual a cualquier tasa de interés.
Para calcular el valor actual de deudas que devengan interés compuesto calculamos primero el monto de la deuda al vencimiento, esto es, el monto nominal; luego, procedemos
...