Taller Sistemas Dinamicos Segundo Corte
Enviado por maffe.sanchez • 27 de Febrero de 2016 • Práctica o problema • 552 Palabras (3 Páginas) • 323 Visitas
Taller Sistemas Dinamicos Segundo Corte
Diego Andrés Espinel Hernández, Daniel Felipe Gualdron Orjuela
1 Ejercicio Sistema Translacional
<Graphics file: D:/Games/Sistema Traslacional.jpg>
Fk_{1}=k_{1}X_{1}
Fk_{2}=k_{2}X_{2}
Fb{}_{1}=b_{1}\mathring{X_{1}}
Fb_{2}=b_{2}(\mathring{X_{1}}+\mathring{X_{2}})
1.1 Diagrama de cuerpo libre para masa 1
<Graphics file: D:/Games/masa 1t.jpg>
f_{1}(t)-Fk_{1}-Fb_{1}-Fb_{2}=m_{1}\ddot{X}_{1}
f_{1}(t)=m_{1}\ddot{X}_{1}+Fk_{1}+Fb_{1}+Fb_{2}
f_{1}(t)=m_{1}\ddot{X_{1}}+(b_{1}+b_{2})\mathring{X_{1}}+k_{1}X_{1}+b_{2}\mathring{X_{2}}
1.2 Diagrama de cuerpo libre para masa 2
<Graphics file: D:/Games/masa 2t.jpg>
f_{2}(t)-Fb_{2}-Fk_{2}=m_{2}\ddot{X_{2}}
f_{2}(t)=m_{2}\ddot{X_{2}}+Fb_{2}+Fk_{2}
f_{2}(t)=m_{2}\ddot{X_{2}}+b\mathring{X_{2}}+k_{2}X_{2}+b_{2}\ddot{X_{2}}
1.3 Funciones de transferencia
Aplicamos tansformada de Laplace en f1 y f2
f_{1}(s)=x_{1}(s)[m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}]+x_{2}(s)b_{2}s
Ecuacion 1
f_{2}(s)=x_{2}(s)[m_{2}s^{2}+b_{2}s+k_{2}]+x_{1}(s)b_{2}s
Ecuacion 2
Para las fdt se aplica superposición. Iniciando ahora con f_{2}(s)=0
DespejamosX_{2}(s)
de la Ecuación 2
x_{2}(s)=\frac{-b_{2}s}{m_{2}s^{2}+b_{2}s+k_{2}}x_{1}(s)
Se reemplaza X_{2}(s)
en la Ecuación 1
f_{1}(s)=x_{1}(s)[m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}]+[\frac{-b_{2}s}{m_{2}s^{2}+b_{2}s+k_{2}}x_{1}(s)]*b_{2}s\}
f_{1}(s)=x_{1}(s)[m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}]-\frac{(b_{2}s)^{2}}{m_{2}s^{2}+b_{2}s+k_{2}}x_{1}(s)
f_{1}(s)=\frac{[m_{2}s^{2}+b_{2}s+k_{2}]*[m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}]-(b{}_{2}s){}^{2}}{m_{2}s^{2}+b_{2}s+k_{2}}x_{1}(s)
\frac{x_{1}(s)}{f_{1}(s)}=\frac{m_{2}s^{2}+b_{2}s+k_{2}}{[m_{2}s^{2}+b_{2}s+k_{2}]*[m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}]-(b{}_{2}s){}^{2}}
DEN=s^{4}(m_{1}m_{2})+s^{3}[(m_{2}b_{1})+(m{}_{2}b_{2})+(m{}_{1}b_{2})]+s^{2}(m_{2}k_{1}+b{}_{1}b_{2}+m_{1}k_{2})+s[b_{2}k_{1}+k_{2}(b_{1}+b_{2})]+k_{1}k_{2}
Primera funcion de transferencia \frac{X_{1}(s)}{f_{1}(s)}
\frac{x_{1}(s)}{f_{1}(s)}=\frac{m_{2}s^{2}+b_{2}s+k_{2}}{DEN}
De la Ecuación 2 despejamos X_{1}(s)
x_{1}(s)=-\frac{m_{2}s^{2}+b_{2}s+k_{2}}{b_{2}s}x_{2}(s)
Reemplazando en FDT1
\frac{-[m_{2}s^{2}+b_{2}s+k_{2}]*x_{2}(s)}{\frac{b_{2}s}{f_{1}(s)}}=\frac{m_{2}s^{2}+b_{2}s+k_{2}}{DEN}
Segunda funcion de transferencia \frac{X_{2}(s)}{f_{1}(s)}
\frac{x_{2}(s)}{f_{1}(s)}=\frac{-b{}_{2}s}{DEN}
Ahora para dejar en términos de f_{2}(s)
despejamos de la
Ecuación 1
Igualamos por superposición f_{1}(s)=0
, y despejamos X_{1}(s)
x_{1}(s)=-\frac{b_{2}s}{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}*x_{2}(s)
Reemplazamos X_{1}(s)
en la Ecuación 2
f_{2}(s)=x_{2}(s)[m_{2}s^{2}+b_{2}s+k_{2}]+[-x_{2}(s)\frac{b_{2}s}{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}]b{}_{2}s
f_{2}(s)=x_{2}(s)[m_{2}s^{2}+b_{2}s+k_{2}]-\frac{x_{2}(s)*(b{}_{2}s){}^{2}}{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}
f_{2}(s)=x_{2}(s)\frac{[m_{2}s^{2}+b_{2}s+k_{2}]*[m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}]-(b{}_{2}s){}^{2}}{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}
\frac{x_{2}(s)}{f_{2}(s)}=\frac{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}{[m_{2}s^{2}+b_{2}s+k_{2}]*[m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}]-(b{}_{2}s){}^{2}}
Tercera funcion de transferencia \frac{X_{2}(s)}{f_{2}(s)}
\frac{x_{2}(s)}{f_{2}(s)}=\frac{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}{DEN}
Ahora despejamos x_{2}(s)
de la Ecuación 2
x_{2}(s)=-x_{1}(s)*\frac{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}{b_{2}s}
Reemplazamos X_{2}(s)
en la FDT 3
-x_{1}(s)\frac{\frac{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}{b_{2}s}}{f_{2}(s)}=\frac{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}{DEN}
Cuarta funcion de transferencia \frac{X_{1}(s)}{f_{2}(s)}
\frac{x_{1}(s)}{f_{2}(s)}=-\frac{b{}_{2}s}{DEN}
1.4 Polos, ceros, tiempo de estabilización y frecuencia de
oscilación
Con m_{1}=10kg
m_{2}=8kg
k_{1}=80N/m
k_{2}=110N/m
b_{1}=8Ns/m
b_{2}=10Ns/m
f_{1}(t)=10N
f_{2}(t)=15N
Polos:
Polo 1 y 2=-1.1942\pm2.7804i
Polo 3 y 4= -0.3308\pm3.4502i
Ceros:
En FDT1
-\frac{5}{8}\pm3.655i
En FDT2
0
En FDT3
-\frac{9}{8}\pm2.6814i
En FDT4
0
El sistema es estable. Tiene un tiempo de estabilización
\tau=\frac{1}{0.3308}=3.02seg
5\tau=15.1seg
Frecuencia
w=2.7804rad/seg
f=0.44Hz
1.5 Deformacion de cada elemento
Para el resorte K_{1}
y amortiguador b_{1}
\frac{x_{1}(s)}{f_{1}(s)}=\frac{m_{2}s^{2}+b_{2}s+k_{2}}{DEN}
Para el amortiguador b_{2}
\frac{x_{1}(s)}{f_{1}(s)}+\frac{x_{2}(s)}{f_{2}(s)}=\frac{(m_{1}+m_{2})s^{2}+(b_{1}+2b_{2})s+k_{1}+k_{2}}{DEN}
Para el resorte K_{2}
\frac{x_{2}(s)}{f_{2}(s)}=\frac{m_{1}s^{2}+(b_{1}+b_{2})s+k_{1}}{DEN}
1.6 Gráficas por Ecuaciones diferenciales y funciones de
transferencia
<Graphics file: D:/Games/graficas guays.jpg>
2 Ejercicio Sistema Rotacional Mixto
<Graphics file: D:/Games/Sistema Rotacional.jpg>
Hallamos el valor
...