Acuerdo 592
Enviado por alexcitapr • 6 de Junio de 2014 • 3.106 Palabras (13 Páginas) • 189 Visitas
MAPA CURRICULAR:
La Educación Básica, en sus tres niveles educativos, plantea un trayecto formativo congruente para desarrollar competencias y, al concluirla, los estudiantes sean capaces de resolver eficaz y creativamente los problemas cotidianos que enfrenten, por lo que promueve una diversidad de oportunidades de aprendizaje que se articulan y distribuyen a lo largo del preescolar, la primaria y la secundaria y que se reflejan en el mapa curricular.
El mapa curricular de la Educación Básica se representa por espacios organizados en cuatro campos de formación, que permiten visualizar de manera gráfica la articulación curricular. Además, los campos de formación organizan otros espacios curriculares estableciendo relaciones entre sí.
En el mapa curricular pueden observarse de manera horizontal la secuencia y la gradualidad de las asignaturas que constituyen la Educación Básica. La organización vertical en periodos escolares indica la progresión de los Estándares Curriculares de Español, Matemáticas, Ciencias, Segunda Lengua: Inglés y Habilidades Digitales. Es conveniente aclarar que esta representación gráfica no expresa de manera completa sus interrelaciones. En consecuencia, la ubicación de los campos formativos de preescolar y las asignaturas de primaria y secundaria, alineados respecto a los campos de formación de la Educación Básica, se centran en sus principales vinculaciones.
CAMPO DE FORMACIÓN: PENSAMIENTO MATEMATICO:
El mundo contemporáneo obliga a construir diversas visiones sobre la realidad y proponer formas diferenciadas para la solución de problemas usando el razonamiento como herramienta fundamental. Representar una solución implica establecer simbolismos y correlaciones mediante el lenguaje matemático. El campo Pensamiento matemático articula y organiza el tránsito de la aritmética y la geometría y de la interpretación de información y procesos de medición, al lenguaje algebraico; del razonamiento intuitivo al deductivo, y de la búsqueda de información a los recursos que se utilizan para presentarla.
El conocimiento de reglas, algoritmos, fórmulas y definiciones sólo es importante en la medida en que los alumnos puedan utilizarlo de manera flexible para solucionar problemas. De ahí que los procesos de estudio van de lo informal a lo convencional, tanto en términos de lenguaje como de representaciones y procedimientos. La actividad intelectual fundamental en estos procesos se apoya más en el razonamiento que en la memorización.
El énfasis de este campo se plantea con base en la solución de problemas, en la formulación de argumentos para explicar sus resultados y en el diseño de estrategias y sus procesos para la toma de decisiones. En síntesis, se trata de pasar de la aplicación mecánica de un algoritmo a la representación algebraica.
Esta visión curricular del pensamiento matemático busca despertar el interés de los alumnos, desde la escuela y a edades tempranas, hasta las carreras ingenieriles, fenómeno que contribuye a la producción de conocimientos que requieren las nuevas condiciones de intercambio y competencia a nivel mundial.
PENSAMIENTO MATEMATICO EN PREESCOLAR:
El desarrollo del pensamiento matemático inicia en preescolar y su finalidad es que los niños usen los principios del conteo; reconozcan la importancia y utilidad de los números en la vida cotidiana, y se inicien en la resolución de problemas y en la aplicación de estrategias que impliquen agregar, reunir, quitar, igualar y comparar colecciones. Estas acciones crean nociones del algoritmo para sumar o restar.
Este campo formativo favorece el desarrollo de nociones espaciales, como un proceso en el cual se establecen relaciones entre los niños y el espacio, y con los objetos y entre los objetos. Relaciones que dan lugar al reconocimiento de atributos y a la comparación.
PENSAMIENTO MATEMATICO EN PRIMARIA Y SECUNDARIA:
Para avanzar en el desarrollo del pensamiento matemático en la primaria y secundaria, su estudio se orienta a aprender a resolver y formular preguntas en que sea útil la herramienta matemática. Adicionalmente, se enfatiza la necesidad de que los propios alumnos justifiquen la validez de los procedimientos y resultados que encuentren, mediante el uso de este lenguaje.
En la educación primaria, el estudio de la matemática considera el conocimiento y uso del lenguaje aritmético, algebraico y geométrico, así como la interpretación de información y de los procesos de medición. El nivel de secundaria atiende el tránsito del razonamiento intuitivo al deductivo, y de la búsqueda de información al análisis de los recursos que se utilizan para presentarla.
A lo largo de la Educación Básica se busca que los alumnos sean responsables de construir nuevos conocimientos a partir de sus saberes previos, lo que implica:
• Formular y validar conjeturas.
• Plantearse nuevas preguntas.
• Comunicar, analizar e interpretar procedimientos de resolución.
• Buscar argumentos para validar procedimientos y resultados.
• Encontrar diferentes formas de resolver los problemas.
• Manejar técnicas de manera eficiente.
SEGUNDO PERIODO.
ESTÁNDARES:
Los Estándares Curriculares de este periodo corresponden a dos ejes temáticos:
Sentido numérico y pensamiento algebraico, y Forma, espacio y medida.
Al término del Segundo periodo (tercero de primaria), los estudiantes saben resolver problemas aditivos con diferente estructura, utilizan los algoritmos convencionales, así como problemas multiplicativos simples. Saben calcular e interpretar medidas de longitud y tiempo, e identifican características particulares de figuras geométricas; asimismo, leen información en pictogramas, gráficas de barras y otros portadores.
Además de los conocimientos y las habilidades matemáticas descritos anteriormente, los estudiantes desarrollarán, con base en la metodología didáctica que se sugiere para el estudio, un conjunto de actitudes y valores que son esenciales en la construcción de la competencia matemática.
1. Sentido numérico y pensamiento algebraico
En este periodo el Sentido numérico y pensamiento algebraico incluye los siguientes temas:
1.1. Números y sistemas de numeración.
1.2. Problemas aditivos.
1.3. Problemas multiplicativos.
Los estándares curriculares para este eje son los siguientes. El alumno:
1.1.1. Lee, escribe y compara números naturales de hasta cuatro cifras.
1.1.2. Resuelve problemas de reparto en los que el resultado es una fracción de la forma m/2n.
1.2.1. Resuelve problemas
...