ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Algebra Universidad Tecnológica de la Costa Grande de Guerrero


Enviado por   •  5 de Noviembre de 2015  •  Documentos de Investigación  •  15.568 Palabras (63 Páginas)  •  111 Visitas

Página 1 de 63

INSTITUCION:

Universidad Tecnológica de la Costa Grande de Guerrero

CARRERA:

T.S.U  En Administración  Área  De Recursos Humanos

ALUMNA:

Martina Luna Medina

MATERIA:

Estadística

MAESTRO:

L.A.E. Carlos Minisak Ureña Barragán

Pepatlan, Gro. 28 de septiembre de 2015

ÍNDICE

INTRODUCCIÓN        

OPERACIONES ALGEBRAICAS BASICAS        

SUMA O ADICIÓN:        

EJEMPLOS:        

RESTA:        

EJEMPLOS:        

MULTIPLICASION:        

EJEMPLOS:        

DIVISIÓN:        

EJEMPLOS:        

POTENCIACIÓN:        

EJEMPLOS:        

ECUACIONES DE PRIMER GRADO        

EJEMPLOS:        

ECUACIONES DE SEGUNDO GRADO        

EJEMPLOS:        

ECUACIONES SIMULTÁNEAS        

EJEMPLOS:        

Método de sustitución:        

Método de igualación        

Método de eliminación por suma o resta        

Método gráfico:        

INTRODUCCIÓN

El álgebra es la rama de la Matemática en la cual se emplea números, letras y signos, para poder hacer referencia a múltiples operaciones aritméticas. A continuación se analizaran las operaciones algebraicas básicas, sus respectivas explicaciones breves y sus procedimientos, así como también la observación de ecuaciones de primer grado, segundo grado y simultáneas, con sus ejemplos correspondientes, sus desplazamientos y sus procedimiento de realización, indicando la manera en que se aplican a la carrera de Administración área recursos humanos, así como también en cualquier problemática que se presente en la vida cotidiana.

   

        

OPERACIONES ALGEBRAICAS BASICAS

SUMA O ADICIÓN:

 Es una operación que tiene por objeto reunir dos o más expresiones  algebraicas (sumandos) en una sola expresión algebraica (suma). En una suma algebraica la operación se dice finalizada si todos los términos semejantes entre los sumandos, han sido simplificados totalmente.

[pic 2]

Propiedades de la suma algebraicas:

  • Asociativa: la suma es una operación binaria, que se realiza tomando dos sumandos, obteniendo un resultado parcial y este sumándolo con el segundo sumando y así sucesivamente, hasta agregar todos los sumandos al resultado final. Esto puede hacerse comenzando desde izquierda (lo usual) o desde la derecha (a causa de las propiedades conmutativas).

[pic 3]

  • Conmutativa: Esta nos dice que el orden los sumandos no alteran el resultado de la suma.

[pic 4]

  • Elemento neutro: Hay un polinomio que es neutro y que al sumarse con cualquier otro polinomio no lo altera, este neutro es “0”.

[pic 5]

  • Elemento opuesto: para cada polinomio queda definido otro que se llama su inverso aditivo, al sumarse dan como resultado el neutro aditivo de los polinomios que es “0”.

[pic 6]

EJEMPLOS:

  1. Suma: [pic 7]

La suma algebraica se basa en juntar todos aquellos términos semejantes (se entiende por términos semejantes a los números enteros  que tienen la misma incógnita o la misma letra). Entonces tendremos que agrupar los números de la misma letra con la misma incógnita.

 [pic 8]

[pic 9]

[pic 10]

[pic 11]

Entonces tendremos como resultado:

 R=  [pic 12]

  1. Suma: [pic 13]
  • Se agruparan los números semejantes:

[pic 14]

Entonces quedaría que:

[pic 15]

[pic 16]

Aquí en esta suma, como solamente encontramos un enumero entero sin letra por lo cual se bajara directamente a la ecuación y nos quedaría como resultado:

R= [pic 17]

  1. Suma: [pic 18]
  • Se agruparan los términos semejantes

 [pic 19]

[pic 20]

[pic 21]

[pic 22]

Como los últimos resultados fueron cero y como sabemos cero es un número neutro el cual no tiene valor. El resultado nos quedaría:

 R= [pic 23]

  1. Suma: [pic 24]
  • Se agrupan los términos semejantes:

[pic 25]

Entonces decimos que:

[pic 26]

[pic 27]

[pic 28]

Como resultado nos quedaría:

R= [pic 29]

RESTA:

Se realiza de manera similar o como se hace en la suma de operaciones algebraicas, es decir, se realzan las restas entre los términos semejantes.

La regla general para restar dice que se escribe el minuendo con sus propios signos y a continuación el sustraendo con los signos cambiados y se reducen los términos semejantes si los hay.

[pic 30]

Propiedades de la resta algebraica:

  • Cerradura: La resta de dos polinomios dará como resultado otro polinomio.
  • No hay propiedad asociativa: La resta solo puede hacerse entre dos polinomios
  • No hay propiedad conmutativa: El orden del polinomio que se va a disminuir y del sustraendo “si” altera el resultado de la resta.

Sean A y B dos polinomios entonces se cumple que: [pic 31]

EJEMPLOS:

  1. Resta:            [pic 32][pic 33]

 Es muy importante comprender la ley de los signos; teniendo estas expresiones algebraicas lo primero que tendremos que hacer seria encontrar:

...

Descargar como (para miembros actualizados) txt (34 Kb) pdf (477 Kb) docx (132 Kb)
Leer 62 páginas más »
Disponible sólo en Clubensayos.com