CIECULO UNITARIO
Enviado por ivan • 20 de Agosto de 2012 • 2.502 Palabras (11 Páginas) • 412 Visitas
SEP SEMS
ALUMNO: ISRAEL LOPEZ RODRIGUEZ.
PROFESOR: LUIS ANONIO JIMENEZ ALDUENDA
TEMA: PORTAFOLIO (CIRCULO UNITARIO).
CALCULO INTEGRAL VI SEMESTRE FISICO-MATEMATICO “A”
(TRIGONOMETRIA)
CIRCULO UNITARIO.
OBJETIVO.
Conocer y aplicar las funciones trigonométricas, identidades trigonométricas, resolución de triángulos, rectángulos y oblicuángulos enfocados a la vida real.
IDENTIDADES TRIGONOMETRICAS.
U
na identidad trigonométrica es una igualdad entre expresiones que contienen funciones trigonométricas y es válida para todos los valores del ángulo en los que están definidas las funciones (y las operaciones aritméticas involucradas)
•
Relaciones básicas.
Relación pitagórica
Identidad de la razón
De estas dos identidades, se puede extrapolar la siguiente tabla. Sin embargo, nótese que estas ecuaciones de conversión pueden devolver el signo incorrecto (+ ó −). Por ejemplo, si , la conversión propuesta en la tabla indica que , aunque es posible que . Para obtener la única respuesta correcta se necesitará saber en qué cuadrante está θ.
Funciones trigonométricas en función de las otras cinco.
Se n.
Co s.
Tan.
Co t.
Se c.
Cs c.
DE LAS DEFINICIONES DE LAS FUNCIONES TRIGONOMÉTRICAS:
Son más sencillas de probar en la circunferencia trigonométrica o goniométrica (que tiene radio igual a 1):
A veces es importante saber que cualquier combinación lineal de una serie de ondas senoidales que tienen el mismo período pero están desfasadas, es también una onda senoidal del mismo período pero con un desplazamiento de fase diferente. Dicho de otro modo:
Es llamada identidad trigonométrica fundamental, y efectuando sencillas operaciones permite encontrar unas 24 identidades más, muy útiles para problemas introductorios del tipo conocido el valor de la función seno, obtenga el valor de las restantes (sin tabla ni calculadora).
Por ejemplo, si se divide ambos miembros por cos², se tiene:
Calculando la recíproca de la expresión anterior:
Entonces puede expresarse la función seno según alguna otra conocida:
Teoremas de la suma y diferencia de ángulos.
Pueden demostrarse según la Fórmula de Euler o mediante la proyección de ángulos consecutivos. La identidad de la tangente surge del cociente entre coseno y seno, y las restantes de la recíproca correspondiente.
De lo que se sigue para determinados ángulos suplementarios:
Para ángulos complementarios:
Para ángulos opuestos:
Identidades del ángulo múltiple.
Si Tn es el n-simo Polinomio de Chebyshev entonces
Fórmula de De Moivre:
Pueden obtenerse remplazándolo y por x (o sea ) en las identidades anteriores, y usando el teorema de Pitágoras para los dos últimos (a veces es útil expresar la identidad en términos de seno, o de coseno solamente), o bien aplicando la Fórmula de De Moivre cuando .
Fórmula del ángulo doble
Fórmula del ángulo triple
Fórmula del ángulo medio
Producto infinito de Euler
Identidades para la reducción de exponentes.
Resuelve las identidades tercera y cuarta del ángulo doble para cos²(x) y sin²(x).
Seno
Coseno
Otros
Paso de producto a suma.
Puede probarse usando el teorema de la suma para expandir los segundos miembros.
Deducción de la identidad
Sabemos por el teorema de la suma y la resta que:
Si separamos la suma de la resta quedan entonces los dos posibles casos:
1):
2):
Si tomamos la ecuación 1) y despejamos cos(x)cos(y) nos queda que:
3):
Y si sumamos el miembro de la derecha de la ecuación 2) al miembro izquierdo de la ecuación 3), y para mantener la igualdad se suma el lado izquierdo de la ecuación 2) en el lado derecho de la ecuación 3). (Recuerda que si se suma un elemento a ambos lados de la ecuación se mantiene la misma), quedaría:
Simplificando el elemento sin(x)sin(y) y sumando cos(x)cos(y) quedaría:
Y por último multiplicando ambos lados de la ecuación por ½ queda:
Nota 1: este procedimiento también se puede aplicar para demostrar el origen de las otras dos ecuaciones simplemente cambiando los valores.
Nota 2: Usando 3) y el resultado anterior se obtiene también:
Notar el cambio de signo.
Paso de suma a producto
Reemplazando x por (a + b) / 2 e "y por (a – b) / 2 en las identidades de producto a suma, se tiene:
Paso de diferencia de cuadrados a producto
Deducción
1) recordando:que cateto opuesto sobre cateto adyacente
multiplicando
Sabemos que:
el la primera ecuación transponemos y en la segunda
De tal manera que obtendremos:
aplicando esto en la ecuación inicial
multiplicando
De una manera análoga se halla el segundo teorema.
Eliminar seno y coseno
A veces es necesario transformar funciones de seno y coseno para poderlas sumar libremente, en estos casos es posible eliminar senos y cosenos en
...