ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Circunferencia


Enviado por   •  9 de Noviembre de 2014  •  253 Palabras (2 Páginas)  •  168 Visitas

Página 1 de 2

B. Método 2

Transforma la ecuación trigonométrica dada en una ecuación trigonométrica con una sola función trigonométrica como variable. Existen unos cuantos consejos sobre cómo seleccionar la variable adecuada. Las variables comunes a seleccionar son: sen x = t; cos x = t; cos 2x = t, tg x = t y tg (x/2) = t.

Ejemplo 9: resuelve: 3sen^2 x - 2cos^2 x = 4sen x + 7 (0 < x < 2Pi).

Solución: en la ecuación, reemplaza (cos^2 x) por (1 - sen^2 x), luego simplifica la ecuación:

sen^2 x - 2 - 2sen^2 x - 4sen x - 7 = 0. Calcula sen x = t. La ecuación se convierte en: 5t^2 - 4t - 9 = 0. Esta es una ecuación trigonométrica con 2 raíces reales: t1 = -1 y t2 = 9/5. Se rechaza el segundo t2 ya que es > 1. Después, resuelve: t = sen = -1 --> x = 3Pi/2.

Ejemplo 10: resuelve: tg x + 2 tg^2 x = cotg x + 2.

Solución: calcula tg x = t. Transforma la ecuación dada en una ecuación con t como variable: (2t + 1)(t^2 - 1) = 0. Despeja t de este producto, luego resuelve la ecuación trigonométrica básica tg x = t for x.

7Resuelve tipos especiales de ecuaciones trigonométricas.

Existen unos cuantos tipos especiales de ecuaciones trigonométricas que requieren algunas transformaciones específicas. Ejemplos:

a*sen x+ b*cos x = c ; a(sen x + cos x) + b*cos x*sen x = c ;

a*sen^2 x + b*sen x*cos x + c*cos^2 x = 0.

...

Descargar como (para miembros actualizados) txt (1 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com