ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Circunferencia


Enviado por   •  8 de Noviembre de 2014  •  Síntesis  •  876 Palabras (4 Páginas)  •  235 Visitas

Página 1 de 4

ooooh amada 1 Circunferencia es el conjunto de todos los puntos del plano que equidistan de un mismo punto llamado centro de la circunferencia. El punto centro no pertenece a la circunferencia. La circunferencia se nombra con la letra del centro y un radio.

Círculo es la figura plana formada por una circunferencia más toda su región o área interior

Ejemplos prácticos de una circunferencia: Aro, anillo, hula-hula, borde de vaso, la orilla de un plato, etc.

2 Radio: Es un segmento que une el centro de la circunferencia con cualquier punto de ella.

El radio se nombra con la letra “r” o bien con sus puntos extremos.

La medida del radio es constante

Cuerda: es el segmento que une dos puntos de la circunferencia. Las cuerdas tienen distintas medidas.

Diámetro: Es la cuerda que pasa por el centro de la circunferencia.

El diámetro es la cuerda de mayor medida.

El diámetro se nombra con la letra “d”.

El diámetro siempre es el doble del radio: d = 2r r = d/2 .

Secante: es la recta que intersecta en dos puntos a la circunferencia.

Arco: es una parte de la circunferencia comprendida entre dos puntos de ella.

3 Pi es el número que se obtiene de dividir la longitud de una circunferencia por su diámetro. No importa el tamaño de la circunferencia. Grande o pequeña, la proporción entre su longitud y su diámetro es siempre la misma. Aunque es probable que esta propiedad fuera conocida con anterioridad, la primeras pruebas que tenemos de su conocimiento son el papiro de Moscú de 1850 a.C. y el papiro Rhind de 1650 a.C. (aunque es una copia de un documento más antiguo. En ellos se tratan varios problemas matemáticos, en algunos de los cuales se aproxima la π como 256/81, lo que se desvía poco más del 0.6% de su valor real. Más o menos por la misma época, los babilonios daban a π el valor de 25/8. En el Antiguo Testamento, escrito más de diez siglos después, Yahvé no se complica mucho la vida y establece por decreto divino que π vale exáctamente 3.

Pero los grandes estudiosos de este número fueron los antiguos griegos, como Anaxágoras, Hipócrates de Quíos o Antifonte de Atenas. Anteriormente, el valor de π se determinaba, casi con toda seguridad, mediante medidas experimentales. Arquímedes fue el primero que sepamos, que realizó una estimación teórica de su valor. Usando polígonos circunscritos e inscritos (el mayor contenido en una circunferencia y el menor que la contiene) determinó que π era mayor que 223/71 y menor que 22/7.

Siguiendo el método de Arquímedes, otros matemáticos consiguieron mejores aproximaciones, y ya en 480, Zu Chongzhi había determinado el valor de π entre 3.1415926 y 3.1415927. Sin embargo, el método de los polígonos implica una gran cantidad de cálculos (recordemos que era a mano, y sin el sistema moderno de numeración), así que no

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com