Conjugada
Enviado por • 26 de Octubre de 2013 • Tesis • 585 Palabras (3 Páginas) • 344 Visitas
=Conjugada=
Matriz conjugada de una matriz A Aquella que se obtiene sustituyendo cada elemento por su complejo conjugado (igual parte real, pero la parte imaginaria cambiada de signo).
=Hermitiana o hermitica=
Una matriz hermitiana (o hermítica) es una matriz cuadrada de elementos complejos que tiene la característica de ser igual a su propia traspuesta conjugada. Es decir, el elemento en la i-ésima fila y j-ésima columna es igual al conjugado del elemento en la j-ésima fila e i-ésima columna, para todos los índices i y j:
o, escrita con la traspuesta conjugada A*: Por ejemplo,
es una matriz hermítica.
=Antihermitiana=
Una Matriz antihermitiana es una matriz cuadrada cuya traspuesta conjugada es menos la matriz. Esto es si satisface a la relación:
A * = -A
o en su forma componente, si (A = ai,j):
Para todas las i y las j.
=Ortogonal=
Una matriz ortogonal es necesariamente cuadrada e invertible: A-1 = AT La inversa de una matriz ortogonal es una matriz ortogonal. El producto de dos matrices ortogonales es una matriz ortogonal. El determinante de una matriz ortogonal vale +1 ó -1.
2.4 TRANSFORMACIONES ELEMENTALES POR RENGLÓN. ESCALONAMIENTO DE UNA MATRIZ. RANGO DE UNA MATRIZ.
La idea que se persigue con las transformaciones elementales es convertir una matriz concreta en otra matriz más fácil de estudiar. En concreto, siempre será posible conseguir una matriz escalonada, en el sentido que definimos a continuación.
Sea A una matriz y F una fila de A. Diremos que F es nula si todos los n´umeros de F coinciden con el cero. Si F es no nula, llamamos PIVOTE de F al primer n´umero distinto de cero de F contando de izquierda a derecha.
Una MATRIZ ESCALONADA es aquella que verifica las siguientes propiedades:
1. Todas las filas nulas (caso de existir) se encuentran en la parte inferior de la matriz.
2. El pivote de cada fila no nula se encuentra estrictamente mas a la derecha que el pivote de la fila de encima.
Por ejemplo, entre las matrices:
A no es escalonada, mientras que B y C si lo son.
Dada una matriz escalonada E se define el RANGO de E, que representamos por rg (E), como el numero de filas no nulas de E.
En los ejemplos B y C de arriba se tiene rg (B) = rg(C) = 2, sin embargo no podemos decir que rg(A) = 3 ya que A no está escalonada. Otro ejemplo, las matrices nulas tienen rango cero y la matriz identidad de orden n cumple rg (In) = n.
La siguiente cuestión que abordaremos es la definición de rango para una matriz cualquiera que no esté escalonada. La idea será la de transformar la matriz dada en otra que sea escalonada mediante las llamadas transformaciones
...