ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

DISTRIBUCION BINOMIAL


Enviado por   •  15 de Julio de 2014  •  2.076 Palabras (9 Páginas)  •  908 Visitas

Página 1 de 9

Distribución binomial

.

En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.

Para representar que una variable aleatoria X sigue una distribución binomial de parámetros n y p, se escribe:

1. DISTRIBUCIÓN BINOMIAL

Las características de esta distribución son:

a) En los experimentos que tienen este tipo de distribución, siempre se esperan dos tipos de resultados, ejem. Defectuoso, no defectuoso, pasa, no pasa, etc, etc., denominados arbitrariamente “éxito” (que es lo que se espera que ocurra) o “fracaso” (lo contrario del éxito).

b) Las probabilidades asociadas a cada uno de estos resultados son constantes, es decir no cambian.

c) Cada uno de los ensayos o repeticiones del experimento son independientes entre sí.

d) El número de ensayos o repeticiones del experimento (n) es constante.

. DISTRIBUCIÓN DE POISSON.

Características:

En este tipo de experimentos los éxitos buscados son expresados por unidad de área, tiempo, pieza, etc, etc,:

- # de defectos de una tela por m2

- # de aviones que aterrizan en un aeropuerto por día, hora, minuto, etc, etc.

- # de bacterias por cm2 de cultivo

- # de llamadas telefónicas a un conmutador por hora, minuto, etc, etc.

- # de llegadas de embarcaciones a un puerto por día, mes, etc, etc.

Para determinar la probabilidad de que ocurran x éxitos por unidad de tiempo, área, o producto, la fórmula a utilizar sería:

donde:

p(x, ) = probabilidad de que ocurran x éxitos, cuando el número promedio de ocurrencia de ellos es 

 = media o promedio de éxitos por unidad de tiempo, área o producto

 = 2.718

x = variable que nos denota el número de éxitos que se desea que ocurra

Hay que hacer notar que en esta distribución el número de éxitos que ocurren por unidad de tiempo, área o producto es totalmente al azar y que cada intervalo de tiempo es independiente de otro intervalo dado, así como cada área es independiente de otra área dada y cada producto es independiente de otro producto dado.

Distribución de Poisson

Saltar a: navegación, búsqueda

En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo.

Fue descubierta por Siméon-Denis Poisson, que la dio a conocer en 1838 en su trabajo Recherches sur la probabilité des jugements en matières criminelles et matière civile (Investigación sobre la probabilidad de los juicios en materias criminales y civiles).

Distribución normal

Saltar a: navegación, búsqueda

En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece aproximada en fenómenos reales.

La gráfica de su función de densidad tiene una forma acampanada y es simétrica respecto de un determinado parámetro estadístico. Esta curva se conoce como campana de Gauss y es el gráfico de una función gaussiana.

La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, sociales y psicológicos. Mientras que los mecanismos que subyacen a gran parte de este tipo de fenómenos son desconocidos, por la enorme cantidad de variables incontrolables que en ellos intervienen, el uso del modelo normal puede justificarse asumiendo que cada observación se obtiene como la suma de unas pocas causas independientes.

De hecho, la estadística es un modelo matemático que sólo permite describir un fenómeno, sin explicación alguna. Para la explicación causal es preciso el diseño experimental, de ahí que al uso de la estadística en psicología y sociología sea conocido como método correlacional.

La distribución normal también es importante por su relación con la estimación por mínimos cuadrados, uno de los métodos de estimación más simples y antiguos.

Algunos ejemplos de variables asociadas a fenómenos naturales que siguen el modelo de la normal son:

• caracteres morfológicos de individuos como la estatura;

• caracteres fisiológicos como el efecto de un fármaco;

• caracteres sociológicos como el consumo de cierto producto por un mismo grupo de individuos;

• caracteres psicológicos como el cociente intelectual;

• nivel de ruido en telecomunicaciones;

• errores cometidos al medir ciertas magnitudes;

• etc.

La distribución normal también aparece en muchas áreas de la propia estadística. Por ejemplo, la distribución muestral de las medias muestrales es aproximadamente normal, cuando la distribución de la población de la cual se extrae la muestra no es normal.1 Además, la distribución normal maximiza la entropía entre todas las distribuciones con media y varianza conocidas, lo cual la convierte en la elección natural de la distribución subyacente a una lista de datos resumidos en términos de media muestral y varianza. La distribución normal es la más extendida en estadística y muchos tests estadísticos están basados en una supuesta "normalidad".

En probabilidad, la distribución normal aparece como el límite de varias distribuciones de probabilidad continuas y discretas

DISTRIBUCION NORMAL

Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada por la frecuencia o normalidad con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

En

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com