Distribucion Gamma
Enviado por amerikanista007 • 2 de Septiembre de 2013 • 550 Palabras (3 Páginas) • 570 Visitas
La distribución Gamma Es una distribución adecuada para modelizar el comportamiento de variables aleatorias continuas con asimetría positiva. Es decir, variables que presentan una mayor densidad de sucesos a la izquierda de la media que a la derecha. En su expresión se encuentran dos parámetros, siempre positivos, (α) y (β) de los que depende su forma y alcance por la derecha, y también la función Gamma Γ(α), responsable de la convergencia de la distribución. Los parámetros de la distribución El primer parámetro (α) situa la máxima intensidad de probabilidad y por este motivo en algunas fuentes se denomina “la forma” de la distribución: cuando se toman valores próximos a cero aparece entonces un dibujo muy similar al de la distribución exponencial. Cuando se toman valores más grandes de (α) el centro de la distribución se desplaza a la derecha y va apareceiendo la forma de una campana de Gauss con asimetría positiva. Es el segundo parámetro (β) el que determina la forma o alcance de esta asimetría positiva desplazando la densidad de probabilidad en la cola de la derecha. Para valores elevados de (β) la distribución acumula más densidad de probabilidad en el extremo derecho de la cola, alargando mucho su dibujo y dispersando la probabilidad a lo largo del plano. Al dispersar la probabilidad la altura máxima de densidad de probabilidad se va reduciendo; de aquí que se le denomine “escala”. Valores más pequeños de (β) conducen a una figura más simétrica y concentrada, con un pico de densidad de probabilidad más elevado. Una forma de interpretar (β) es “tiempo promedio entre ocurrencia de un suceso”. Relacionándose con el parámetro de la Poisson como β=1/λ. Alternativamente λ será el ratio de ocurrencia: λ=1/β. La expresión también será necesaria más adelante para poder llevar a cabo el desarrollo matemático. Relación con otras distribuciones Si se tiene un parámetro α de valores elevados y β pequeña, entonces la función Gamma converge con la distribución normal. De media , y varianza . Cuando y β la distribución Gamma es exactamente la distribución exponencial con parámetro (α=1). Cuando la proporción entre parámetros es entonces la variable aleatoria se distribuye como una Chi-cuadrado con grados de libertad. Si α=1, entonces se tiene la distribución exponencial negativa de parámetro λ=1/β. Ventajas De esta forma, la distribución Gamma es una distribución flexible para modelizar las formas de la asimetría positiva, de las más concentradas y puntiagudas, a las más dispersas y achatadas. Como ejemplos de variables que se comportan así: - Número de individuos involucrados en accidentes de tráfico en el área urbana: es más habitual que la mayoría de partes abiertos den la proporción de 1 herido por vehículo, que otras proporciones superiores. - Altura a la que se inician las precipitaciones; sucede de forma más habitual precipitaciones iniciadas a una altura
...