ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Distribución De Frecuencias


Enviado por   •  25 de Marzo de 2015  •  1.258 Palabras (6 Páginas)  •  197 Visitas

Página 1 de 6

Distribución de frecuencias

Una distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos, asignando a cada dato su frecuencia correspondiente.

Tipos de frecuencia

Frecuencia absoluta

La frecuencia absoluta es el número de veces que aparece un determinado valor en un estudio estadístico.

Se representa por fi.

La suma de las frecuencias absolutas es igual al número total de datos, que se representa por N.

Para indicar resumidamente estas sumas se utiliza la letra griega Σ (sigma mayúscula) que se lee suma o sumatoria.

Frecuencia relativa

La frecuencia relativa es el cociente entre la frecuencia absoluta de un determinado valor y el número total de datos.

Se puede expresar en tantos por ciento y se representa por ni.

La suma de las frecuencias relativas es igual a 1.

Frecuencia acumulada

La frecuencia acumulada es la suma de las frecuencias absolutas de todos los valores inferiores o iguales al valor considerado.

Se representa por Fi.

Frecuencia relativa acumulada

La frecuencia relativa acumulada es el cociente entre la frecuencia acumulada de un determinado valor y el número total de datos. Se puede expresar en tantos por ciento.

Distribución de frecuencias agrupadas

La distribución de frecuencias agrupadas o tabla con datos agrupados se emplea si las variables toman unnúmero grande de valores o la variable es continua.

Se agrupan los valores en intervalos que tengan la misma amplitud denominados clases. A cada clase se le asigna su frecuencia correspondiente.

Límites de la clase

Cada clase está delimitada por el límite inferior de la clase y el límite superior de la clase.

Amplitud de la clase

La amplitud de la clase es la diferencia entre el límite superior e inferior de la clase.

Marca de clase

La marca de clase es el punto medio de cada intervalo y es el valor que representa a todo el intervalo para elcálculo de algunos parámetros.

Construcción de una tabla de datos agrupados

3, 15, 24, 28, 33, 35, 38, 42, 43, 38, 36, 34, 29, 25, 17, 7, 34, 36, 39, 44, 31, 26, 20, 11, 13, 22, 27, 47, 39, 37, 34, 32, 35, 28, 38, 41, 48, 15, 32, 13.

1º se localizan los valores menor y mayor de la distribución. En este caso son 3 y 48.

2º Se restan y se busca un número entero un poco mayor que la diferencia y que sea divisible por el número de intervalos de queramos poner.

Es conveniente que el número de intervalos oscile entre 6 y 15.

En este caso, 48 - 3 = 45, incrementamos el número hasta 50 : 5 = 10 intervalos.

Se forman los intervalos teniendo presente que el límite inferior de una clase pertenece al intervalo, pero el límite superior no pertenece intervalo, se cuenta en el siguiente intervalo.

ci fi Fi ni Ni

[0, 5) 2.5 1 1 0.025 0.025

[5, 10) 7.5 1 2 0.025 0.050

[10, 15) 12.5 3 5 0.075 0.125

[15, 20) 17.5 3 8 0.075 0.200

[20, 25) 22.5 3 11 0.075 0.2775

[25, 30) 27.5 6 17 0.150 0.425

[30, 35) 32.5 7 24 0.175 0.600

[35, 40) 37.5 10 34 0.250 0.850

[40, 45) 42.5 4 38 0.100 0.950

[45, 50) 47.5 2 40 0.050 1

40 1

Medidas de tendencia central

Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro de la distribución de datos se denomina medida o parámetro de tendencia central o de centralización. Cuando se hace referencia únicamente a la posición de estos parámetros dentro de la distribución, independientemente de que ésta esté más o menos centrada, se habla de estas medidas como medidas de posición.1 En este caso se incluyen también los cuantiles entre estas medidas.

Entre las medidas de tendencia central tenemos:

• Media

• Media ponderada

• Media geométrica

• Media armónica

• Mediana

• Moda

Se debe tener en cuenta que existen variables cualitativas y variables cuantitativas, por lo que las medidas de posición o medidas de tendencia se usan de acuerdo al tipo de variable que se está observando, en este caso se observan variables cuantitativas.

Medidas de dispersión

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión son:

Rango o recorrido

El rango es la diferencia entre el mayor y el menor de los datos de una distribución estadística.

Desviación media

La desviación respecto a la media es la diferencia entre cada valor de la variable estadística y la media aritmética.

Di = x - x

La desviación media es la media aritmética de

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com